summaryrefslogtreecommitdiff
path: root/models/model.py
AgeCommit message (Collapse)Author
2021-01-11Add evaluation script, code review and fix some bugsJordan Gong
1. Add new `train_all` method for one shot calling 2. Print time used in 1k iterations 3. Correct label dimension in predict function 4. Transpose distance matrix for convenient indexing 5. Sort dictionary before generate signature 6. Extract visible CUDA setting function
2021-01-11Implement evaluatorJordan Gong
2021-01-10Make predict function transform samples different conditions in a single shotJordan Gong
2021-01-09Add prototype predict functionJordan Gong
2021-01-07Merge branch 'master' into python3.8Jordan Gong
# Conflicts: # models/model.py
2021-01-07Train different models in different conditionsJordan Gong
2021-01-07Type hint for python version lower than 3.9Jordan Gong
2021-01-07Type hint for python version lower than 3.9Jordan Gong
2021-01-07Add typical training script and some bug fixesJordan Gong
1. Resolve deprecated scheduler stepping issue 2. Make losses in the same scale(replace mean with sum in separate triplet loss, enlarge pose similarity loss 10x) 3. Add ReLU when compute distance in triplet loss 4. Remove classes except Model from `models` package init
2021-01-07Change device config and add enable multi-GPU computingJordan Gong
1. Add `disable_acc` switch for disabling accelerator. When it is off, system will automatically choosing accelerator. 2. Enable multi-GPU training using torch.nn.DataParallel
2021-01-06Add CUDA supportJordan Gong
2021-01-06Add TensorBoard supportJordan Gong
2021-01-05Implement checkpoint mechanismJordan Gong
2021-01-05Change and improve weight initializationJordan Gong
1. Change initial weights for Conv layers 2. Find a way to init last fc in init_weights
2021-01-03Separate last fc matrix from weight init functionJordan Gong
Recursive apply will override other parameters too
2021-01-03Implement weight initializationJordan Gong
2021-01-03Update hyperparameter configuration, implement prototype fit functionJordan Gong
2020-12-29Correct batch splitterJordan Gong
We can disentangle features from different subjects, but cannot do it at different temporal orders
2020-12-27Implement some parts of main model structureJordan Gong
1. Configuration parsers 2. Model signature generator
2020-12-27Adopt type hinting generics in standard collections (PEP 585)Jordan Gong
2020-12-26Implement batch splitter to split sampled dataJordan Gong
Disentanglement cannot be processed on different subjects at the same time, we need to load `pr` subjects one by one. The batch splitter will return a pr-length list of tuples (with 2 dicts containing k-length lists of labels, conditions, view and k-length tensor of clip data, representing condition 1 and condition 2 respectively).