summaryrefslogtreecommitdiff
path: root/utils/triplet_loss.py
AgeCommit message (Collapse)Author
2021-03-22Add embedding visualization and validate on testing setJordan Gong
2021-03-12Code refactoringJordan Gong
1. Separate FCs and triplet losses for HPM and PartNet 2. Remove FC-equivalent 1x1 conv layers in HPM 3. Support adjustable learning rate schedulers
2021-03-01Change flat distance calculation methodJordan Gong
2021-03-01Remove identical sample in Batch All caseJordan Gong
2021-02-28Implement sum of loss default in [1]Jordan Gong
[1]A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-identification,” arXiv preprint arXiv:1703.07737, 2017.
2021-02-28Log n-ile embedding distance and normJordan Gong
2021-02-27Implement Batch Hard triplet loss and soft marginJordan Gong
2021-02-20Separate triplet loss from modelJordan Gong
2021-02-14Prepare for DataParallelJordan Gong
2021-02-08Code refactoring, modifications and new featuresJordan Gong
1. Decode features outside of auto-encoder 2. Turn off HPM 1x1 conv by default 3. Change canonical feature map size from `feature_channels * 8 x 4 x 2` to `feature_channels * 2 x 16 x 8` 4. Use mean of canonical embeddings instead of mean of static features 5. Calculate static and dynamic loss separately 6. Calculate mean of parts in triplet loss instead of sum of parts 7. Add switch to log disentangled images 8. Change default configuration
2021-01-11Implement evaluatorJordan Gong
2021-01-09Fix NaN when separate sum is zeroJordan Gong
2021-01-07Add typical training script and some bug fixesJordan Gong
1. Resolve deprecated scheduler stepping issue 2. Make losses in the same scale(replace mean with sum in separate triplet loss, enlarge pose similarity loss 10x) 3. Add ReLU when compute distance in triplet loss 4. Remove classes except Model from `models` package init
2021-01-05Implement Batch All Triplet LossJordan Gong