From be508061aeb3049a547c4e0c92d21c254689c1d5 Mon Sep 17 00:00:00 2001 From: Jordan Gong Date: Sun, 14 Feb 2021 20:36:17 +0800 Subject: Memory usage improvement This update separates input data to two batches, which reduces ~30% memory usage. --- models/auto_encoder.py | 70 ++++++++++++++++++++++++++++---------------------- 1 file changed, 40 insertions(+), 30 deletions(-) (limited to 'models/auto_encoder.py') diff --git a/models/auto_encoder.py b/models/auto_encoder.py index a9312dd..24a145d 100644 --- a/models/auto_encoder.py +++ b/models/auto_encoder.py @@ -117,32 +117,47 @@ class AutoEncoder(nn.Module): embedding_dims: tuple[int, int, int] = (128, 128, 64) ): super().__init__() + self.f_c_c1_t2_ = None + self.f_p_c1_t2_ = None + self.f_c_c1_t1_ = None self.encoder = Encoder(channels, feature_channels, embedding_dims) self.decoder = Decoder(embedding_dims, feature_channels, channels) - def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None): - n, t, c, h, w = x_c1_t2.size() - # x_c1_t2 is the frame for later module - x_c1_t2_ = x_c1_t2.view(n * t, c, h, w) - (f_a_c1_t2_, f_c_c1_t2_, f_p_c1_t2_) = self.encoder(x_c1_t2_) - - if self.training: - # t1 is random time step, c2 is another condition - x_c1_t1 = x_c1_t1.view(n * t, c, h, w) - (f_a_c1_t1_, f_c_c1_t1_, _) = self.encoder(x_c1_t1) - x_c2_t2 = x_c2_t2.view(n * t, c, h, w) - (_, f_c_c2_t2_, f_p_c2_t2_) = self.encoder(x_c2_t2) - - x_c1_t2_pred_ = self.decoder(f_a_c1_t1_, f_c_c1_t1_, f_p_c1_t2_) - x_c1_t2_pred = x_c1_t2_pred_.view(n, t, c, h, w) - - xrecon_loss = torch.stack([ - F.mse_loss(x_c1_t2[:, i, :, :, :], x_c1_t2_pred[:, i, :, :, :]) - for i in range(t) - ]).sum() - - f_c_c1_t1 = f_c_c1_t1_.view(n, t, -1) - f_c_c1_t2 = f_c_c1_t2_.view(n, t, -1) + def forward(self, x_t2, is_c1=True): + n, t, c, h, w = x_t2.size() + if is_c1: # condition 1 + # x_c1_t2 is the frame for later module + x_c1_t2_ = x_t2.view(n * t, c, h, w) + (f_a_c1_t2_, self.f_c_c1_t2_, self.f_p_c1_t2_) \ + = self.encoder(x_c1_t2_) + + if self.training: + # t1 is random time step + x_c1_t1 = x_t2[:, torch.randperm(t), :, :, :] + x_c1_t1_ = x_c1_t1.view(n * t, c, h, w) + (f_a_c1_t1_, self.f_c_c1_t1_, _) = self.encoder(x_c1_t1_) + + x_c1_t2_pred_ = self.decoder( + f_a_c1_t1_, self.f_c_c1_t1_, self.f_p_c1_t2_ + ) + x_c1_t2_pred = x_c1_t2_pred_.view(n, t, c, h, w) + + xrecon_loss = torch.stack([ + F.mse_loss(x_t2[:, i, :, :, :], x_c1_t2_pred[:, i, :, :, :]) + for i in range(t) + ]).sum() + + return ((f_a_c1_t2_, self.f_c_c1_t2_, self.f_p_c1_t2_), + xrecon_loss) + else: # evaluating + return self.f_c_c1_t2_, self.f_p_c1_t2_ + else: # condition 2 + # c2 is another condition + x_c2_t2_ = x_t2.view(n * t, c, h, w) + (_, f_c_c2_t2_, f_p_c2_t2_) = self.encoder(x_c2_t2_) + + f_c_c1_t1 = self.f_c_c1_t1_.view(n, t, -1) + f_c_c1_t2 = self.f_c_c1_t2_.view(n, t, -1) f_c_c2_t2 = f_c_c2_t2_.view(n, t, -1) cano_cons_loss = torch.stack([ F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :]) @@ -150,13 +165,8 @@ class AutoEncoder(nn.Module): for i in range(t) ]).mean() - f_p_c1_t2 = f_p_c1_t2_.view(n, t, -1) + f_p_c1_t2 = self.f_p_c1_t2_.view(n, t, -1) f_p_c2_t2 = f_p_c2_t2_.view(n, t, -1) pose_sim_loss = F.mse_loss(f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)) - return ( - (f_a_c1_t2_, f_c_c1_t2_, f_p_c1_t2_), - (xrecon_loss, cano_cons_loss, pose_sim_loss * 10) - ) - else: # evaluating - return f_c_c1_t2_, f_p_c1_t2_ + return cano_cons_loss, pose_sim_loss * 10 -- cgit v1.2.3