From c74df416b00f837ba051f3947be92f76e7afbd88 Mon Sep 17 00:00:00 2001 From: Jordan Gong Date: Fri, 12 Mar 2021 13:56:17 +0800 Subject: Code refactoring 1. Separate FCs and triplet losses for HPM and PartNet 2. Remove FC-equivalent 1x1 conv layers in HPM 3. Support adjustable learning rate schedulers --- models/hpm.py | 25 ++++++++++++------------- 1 file changed, 12 insertions(+), 13 deletions(-) (limited to 'models/hpm.py') diff --git a/models/hpm.py b/models/hpm.py index 9879cfb..8186b20 100644 --- a/models/hpm.py +++ b/models/hpm.py @@ -9,32 +9,26 @@ class HorizontalPyramidMatching(nn.Module): self, in_channels: int, out_channels: int = 128, - use_1x1conv: bool = False, scales: tuple[int, ...] = (1, 2, 4), use_avg_pool: bool = True, use_max_pool: bool = False, - **kwargs ): super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.use_1x1conv = use_1x1conv self.scales = scales + self.num_parts = sum(scales) self.use_avg_pool = use_avg_pool self.use_max_pool = use_max_pool self.pyramids = nn.ModuleList([ - self._make_pyramid(scale, **kwargs) for scale in self.scales + self._make_pyramid(scale) for scale in scales ]) + self.fc_mat = nn.Parameter( + torch.empty(self.num_parts, in_channels, out_channels) + ) - def _make_pyramid(self, scale: int, **kwargs): + def _make_pyramid(self, scale: int): pyramid = nn.ModuleList([ - HorizontalPyramidPooling(self.in_channels, - self.out_channels, - use_1x1conv=self.use_1x1conv, - use_avg_pool=self.use_avg_pool, - use_max_pool=self.use_max_pool, - **kwargs) + HorizontalPyramidPooling(self.use_avg_pool, self.use_max_pool) for _ in range(scale) ]) return pyramid @@ -52,4 +46,9 @@ class HorizontalPyramidMatching(nn.Module): x_slice = x_slice.view(n, -1) feature.append(x_slice) x = torch.stack(feature) + + # p, n, c + x = x @ self.fc_mat + # p, n, d + return x -- cgit v1.2.3