From df3a8021b528cc7d585dc17d3e1f3c18a20ed963 Mon Sep 17 00:00:00 2001 From: Jordan Gong Date: Sun, 3 Jan 2021 20:16:16 +0800 Subject: Implement weight initialization --- models/model.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) (limited to 'models/model.py') diff --git a/models/model.py b/models/model.py index c407d6c..ebd6aba 100644 --- a/models/model.py +++ b/models/model.py @@ -2,6 +2,7 @@ from typing import Union, Optional import numpy as np import torch +import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate @@ -67,6 +68,7 @@ class Model: self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, 500, 0.9) self.rbg_pn.train() + self.rbg_pn.apply(self.init_weights) for iter_i, (x_c1, x_c2) in enumerate(dataloader): loss = self.rbg_pn(x_c1['clip'], x_c2['clip'], x_c1['label']) loss.backward() @@ -76,6 +78,18 @@ class Model: if iter_i == self.meta['total_iter']: break + @staticmethod + def init_weights(m): + if isinstance(m, nn.modules.conv._ConvNd): + nn.init.xavier_uniform_(m.weight) + elif isinstance(m, nn.modules.batchnorm._NormBase): + nn.init.normal_(m.weight, 1.0, 0.01) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.xavier_uniform_(m.weight) + elif isinstance(m, nn.Parameter): + nn.init.xavier_uniform_(m) + def _parse_dataset_config( self, dataset_config: DatasetConfiguration -- cgit v1.2.3