import torch import torch.nn as nn import torch.nn.functional as F from models.layers import VGGConv2d, DCGANConvTranspose2d, BasicLinear class Encoder(nn.Module): """Squeeze input feature map to lower dimension""" def __init__( self, in_channels: int = 3, feature_channels: int = 64, output_dims: tuple[int, int, int] = (128, 128, 64) ): super().__init__() self.feature_channels = feature_channels # Appearance features, canonical features, pose features (self.f_a_dim, self.f_c_dim, self.f_p_dim) = output_dims # Conv1 in_channels x 64 x 32 # -> feature_map_size x 64 x 32 self.conv1 = VGGConv2d(in_channels, feature_channels) # MaxPool1 feature_map_size x 64 x 32 # -> feature_map_size x 32 x 16 self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16)) # Conv2 feature_map_size x 32 x 16 # -> (feature_map_size*4) x 32 x 16 self.conv2 = VGGConv2d(feature_channels, feature_channels * 4) # MaxPool2 (feature_map_size*4) x 32 x 16 # -> (feature_map_size*4) x 16 x 8 self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8)) # Conv3 (feature_map_size*4) x 16 x 8 # -> (feature_map_size*8) x 16 x 8 self.conv3 = VGGConv2d(feature_channels * 4, feature_channels * 8) # Conv4 (feature_map_size*8) x 16 x 8 # -> (feature_map_size*8) x 16 x 8 (for large dataset) self.conv4 = VGGConv2d(feature_channels * 8, feature_channels * 8) # MaxPool3 (feature_map_size*8) x 16 x 8 # -> (feature_map_size*8) x 4 x 2 self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2)) embedding_dim = sum(output_dims) # FC (feature_map_size*8) * 4 * 2 -> 320 self.fc = BasicLinear(feature_channels * 8 * 2 * 4, embedding_dim) def forward(self, x): x = self.conv1(x) x = self.max_pool1(x) x = self.conv2(x) x = self.max_pool2(x) x = self.conv3(x) x = self.conv4(x) x = self.max_pool3(x) x = x.view(-1, (self.feature_channels * 8) * 2 * 4) embedding = self.fc(x) f_appearance, f_canonical, f_pose = embedding.split( (self.f_a_dim, self.f_c_dim, self.f_p_dim), dim=1 ) return f_appearance, f_canonical, f_pose class Decoder(nn.Module): """Upscale embedding to original image""" def __init__( self, input_dims: tuple[int, int, int] = (128, 128, 64), feature_channels: int = 64, out_channels: int = 3, ): super().__init__() self.feature_channels = feature_channels embedding_dim = sum(input_dims) # FC 320 -> (feature_map_size*8) * 4 * 2 self.fc = BasicLinear(embedding_dim, feature_channels * 8 * 2 * 4) # TransConv1 (feature_map_size*8) x 4 x 2 # -> (feature_map_size*4) x 8 x 4 self.trans_conv1 = DCGANConvTranspose2d(feature_channels * 8, feature_channels * 4) # TransConv2 (feature_map_size*4) x 8 x 4 # -> (feature_map_size*2) x 16 x 8 self.trans_conv2 = DCGANConvTranspose2d(feature_channels * 4, feature_channels * 2) # TransConv3 (feature_map_size*2) x 16 x 8 # -> feature_map_size x 32 x 16 self.trans_conv3 = DCGANConvTranspose2d(feature_channels * 2, feature_channels) # TransConv4 feature_map_size x 32 x 16 # -> in_channels x 64 x 32 self.trans_conv4 = DCGANConvTranspose2d(feature_channels, out_channels, is_last_layer=True) def forward(self, f_appearance, f_canonical, f_pose, cano_only=False): x = torch.cat((f_appearance, f_canonical, f_pose), dim=1) x = self.fc(x) x = F.relu(x.view(-1, self.feature_channels * 8, 4, 2), inplace=True) x = self.trans_conv1(x) x = self.trans_conv2(x) if cano_only: return x x = self.trans_conv3(x) x = torch.sigmoid(self.trans_conv4(x)) return x class AutoEncoder(nn.Module): def __init__( self, channels: int = 3, feature_channels: int = 64, embedding_dims: tuple[int, int, int] = (128, 128, 64) ): super().__init__() self.f_c_c1_t2_ = None self.f_p_c1_t2_ = None self.f_c_c1_t1_ = None self.encoder = Encoder(channels, feature_channels, embedding_dims) self.decoder = Decoder(embedding_dims, feature_channels, channels) def forward(self, x_t2, is_c1=True): n, t, c, h, w = x_t2.size() if is_c1: # condition 1 # x_c1_t2 is the frame for later module x_c1_t2_ = x_t2.view(n * t, c, h, w) (f_a_c1_t2_, self.f_c_c1_t2_, self.f_p_c1_t2_) \ = self.encoder(x_c1_t2_) if self.training: # t1 is random time step x_c1_t1 = x_t2[:, torch.randperm(t), :, :, :] x_c1_t1_ = x_c1_t1.view(n * t, c, h, w) (f_a_c1_t1_, self.f_c_c1_t1_, _) = self.encoder(x_c1_t1_) x_c1_t2_pred_ = self.decoder( f_a_c1_t1_, self.f_c_c1_t1_, self.f_p_c1_t2_ ) x_c1_t2_pred = x_c1_t2_pred_.view(n, t, c, h, w) xrecon_loss = torch.stack([ F.mse_loss(x_t2[:, i, :, :, :], x_c1_t2_pred[:, i, :, :, :]) for i in range(t) ]).sum() return ((f_a_c1_t2_, self.f_c_c1_t2_, self.f_p_c1_t2_), xrecon_loss) else: # evaluating return self.f_c_c1_t2_, self.f_p_c1_t2_ else: # condition 2 # c2 is another condition x_c2_t2_ = x_t2.view(n * t, c, h, w) (_, f_c_c2_t2_, f_p_c2_t2_) = self.encoder(x_c2_t2_) f_c_c1_t1 = self.f_c_c1_t1_.view(n, t, -1) f_c_c1_t2 = self.f_c_c1_t2_.view(n, t, -1) f_c_c2_t2 = f_c_c2_t2_.view(n, t, -1) cano_cons_loss = torch.stack([ F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :]) + F.mse_loss(f_c_c1_t2[:, i, :], f_c_c2_t2[:, i, :]) for i in range(t) ]).mean() f_p_c1_t2 = self.f_p_c1_t2_.view(n, t, -1) f_p_c2_t2 = f_p_c2_t2_.view(n, t, -1) pose_sim_loss = F.mse_loss(f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)) return cano_cons_loss, pose_sim_loss * 10