import torch import torch.nn as nn import torch.nn.functional as F from models.layers import VGGConv2d, DCGANConvTranspose2d class Encoder(nn.Module): """Squeeze input feature map to lower dimension""" def __init__( self, in_channels: int = 3, frame_size: tuple[int, int] = (64, 48), feature_channels: int = 64, output_dims: tuple[int, int, int] = (192, 192, 128) ): super().__init__() h_0, w_0 = frame_size h_1, w_1 = h_0 // 2, w_0 // 2 h_2, w_2 = h_1 // 2, w_1 // 2 # Appearance features, canonical features, pose features (self.f_a_dim, self.f_c_dim, self.f_p_dim) = output_dims # Conv1 in_channels x H x W # -> feature_map_size x H x W self.conv1 = VGGConv2d(in_channels, feature_channels) # MaxPool1 feature_map_size x H x W # -> feature_map_size x H//2 x W//2 self.max_pool1 = nn.AdaptiveMaxPool2d((h_1, w_1)) # Conv2 feature_map_size x H//2 x W//2 # -> feature_map_size*4 x H//2 x W//2 self.conv2 = VGGConv2d(feature_channels, feature_channels * 4) # MaxPool2 feature_map_size*4 x H//2 x W//2 # -> feature_map_size*4 x H//4 x W//4 self.max_pool2 = nn.AdaptiveMaxPool2d((h_2, w_2)) # Conv3 feature_map_size*4 x H//4 x W//4 # -> feature_map_size*8 x H//4 x W//4 self.conv3 = VGGConv2d(feature_channels * 4, feature_channels * 8) # Conv4 feature_map_size*8 x H//4 x W//4 # -> feature_map_size*8 x H//4 x W//4 (for large dataset) self.conv4 = VGGConv2d(feature_channels * 8, feature_channels * 8) def forward(self, x): x = self.conv1(x) x = self.max_pool1(x) x = self.conv2(x) x = self.max_pool2(x) x = self.conv3(x) x = self.conv4(x) f_appearance, f_canonical, f_pose = x.split( (self.f_a_dim, self.f_c_dim, self.f_p_dim), dim=1 ) return f_appearance, f_canonical, f_pose class Decoder(nn.Module): """Upscale embedding to original image""" def __init__( self, feature_channels: int = 64, out_channels: int = 3, ): super().__init__() self.feature_channels = feature_channels # TransConv1 feature_map_size*8 x H x W # -> feature_map_size*4 x H x W self.trans_conv1 = DCGANConvTranspose2d(feature_channels * 8, feature_channels * 4, kernel_size=3, stride=1, padding=1) # TransConv2 feature_map_size*4 x H x W # -> feature_map_size*2 x H*2 x W*2 self.trans_conv2 = DCGANConvTranspose2d(feature_channels * 4, feature_channels * 2) # TransConv3 feature_map_size*2 x H*2 x W*2 # -> feature_map_size x H*2 x W*2 self.trans_conv3 = DCGANConvTranspose2d(feature_channels * 2, feature_channels, kernel_size=3, stride=1, padding=1) # TransConv4 feature_map_size x H*2 x W*2 # -> in_channels x H*4 x W*4 self.trans_conv4 = DCGANConvTranspose2d(feature_channels, out_channels, is_last_layer=True) def forward(self, f_appearance, f_canonical, f_pose): x = torch.cat((f_appearance, f_canonical, f_pose), dim=1) x = self.trans_conv1(x) x = self.trans_conv2(x) x = self.trans_conv3(x) x = torch.sigmoid(self.trans_conv4(x)) return x class AutoEncoder(nn.Module): def __init__( self, channels: int = 3, frame_size: tuple[int, int] = (64, 48), feature_channels: int = 64, embedding_dims: tuple[int, int, int] = (192, 192, 128) ): super().__init__() self.embedding_dims = embedding_dims self.encoder = Encoder(channels, frame_size, feature_channels, embedding_dims) self.decoder = Decoder(feature_channels, channels) def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None): n, t, c, h, w = x_c1_t2.size() # x_c1_t2 is the frame for later module x_c1_t2_ = x_c1_t2.view(n * t, c, h, w) (f_a_c1_t2_, f_c_c1_t2_, f_p_c1_t2_) = self.encoder(x_c1_t2_) f_size = [torch.Size([n, t, embedding_dim, h // 4, w // 4]) for embedding_dim in self.embedding_dims] f_a_c1_t2 = f_a_c1_t2_.view(f_size[0]) f_c_c1_t2 = f_c_c1_t2_.view(f_size[1]) f_p_c1_t2 = f_p_c1_t2_.view(f_size[2]) if self.training: # t1 is random time step, c2 is another condition x_c1_t1_ = x_c1_t1.view(n * t, c, h, w) (f_a_c1_t1_, f_c_c1_t1_, _) = self.encoder(x_c1_t1_) x_c2_t2_ = x_c2_t2.view(n * t, c, h, w) (_, f_c_c2_t2_, f_p_c2_t2_) = self.encoder(x_c2_t2_) x_c1_t2_pred_ = self.decoder(f_a_c1_t1_, f_c_c1_t1_, f_p_c1_t2_) x_c1_t2_pred = x_c1_t2_pred_.view(n, t, c, h, w) xrecon_loss = torch.stack([ F.mse_loss(x_c1_t2[:, i], x_c1_t2_pred[:, i]) for i in range(t) ]).sum() f_c_c1_t1 = f_c_c1_t1_.view(f_size[1]) f_c_c2_t2 = f_c_c2_t2_.view(f_size[1]) cano_cons_loss = torch.stack([ F.mse_loss(f_c_c1_t1[:, i], f_c_c1_t2[:, i]) + F.mse_loss(f_c_c1_t2[:, i], f_c_c2_t2[:, i]) for i in range(t) ]).mean() f_p_c2_t2 = f_p_c2_t2_.view(f_size[2]) pose_sim_loss = F.mse_loss(f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)) return ( (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2), (xrecon_loss / 10, cano_cons_loss, pose_sim_loss * 10) ) else: # evaluating return f_a_c1_t2, f_c_c1_t2, f_p_c1_t2