import torch import torch.nn as nn from models.layers import HorizontalPyramidPooling class HorizontalPyramidMatching(nn.Module): def __init__( self, in_channels: int, out_channels: int = 128, scales: tuple[int, ...] = (1, 2, 4), use_avg_pool: bool = True, use_max_pool: bool = True, **kwargs ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.scales = scales self.use_avg_pool = use_avg_pool self.use_max_pool = use_max_pool self.pyramids = nn.ModuleList([ self._make_pyramid(scale, **kwargs) for scale in self.scales ]) def _make_pyramid(self, scale: int, **kwargs): pyramid = nn.ModuleList([ HorizontalPyramidPooling(self.in_channels, self.out_channels, use_avg_pool=self.use_avg_pool, use_max_pool=self.use_max_pool, **kwargs) for _ in range(scale) ]) return pyramid def forward(self, x): # Flatten canonical features in all batches t, n, c, h, w = x.size() x = x.view(t * n, c, h, w) feature = [] for pyramid_index, pyramid in enumerate(self.pyramids): h_per_hpp = h // self.scales[pyramid_index] for hpp_index, hpp in enumerate(pyramid): h_filter = torch.arange(hpp_index * h_per_hpp, (hpp_index + 1) * h_per_hpp) x_slice = x[:, :, h_filter, :] x_slice = hpp(x_slice) x_slice = x_slice.view(t * n, -1) feature.append(x_slice) x = torch.stack(feature) # Unfold frames to original batch p, _, c = x.size() x = x.view(p, t, n, c) return x