from typing import Union import torch import torch.nn as nn import torch.nn.functional as F class BasicConv2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]], **kwargs ): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) class VGGConv2d(BasicConv2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]] = 3, padding: int = 1, **kwargs ): super().__init__(in_channels, out_channels, kernel_size, padding=padding, **kwargs) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.leaky_relu(x, 0.2, inplace=True) class BasicConvTranspose2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]], **kwargs ): super().__init__() self.trans_conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.trans_conv(x) x = self.bn(x) return F.relu(x, inplace=True) class DCGANConvTranspose2d(BasicConvTranspose2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]] = 4, stride: int = 2, padding: int = 1, is_last_layer: bool = False, **kwargs ): super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, **kwargs) self.is_last_layer = is_last_layer def forward(self, x): if self.is_last_layer: return self.trans_conv(x) else: return super().forward(x) class BasicLinear(nn.Module): def __init__( self, in_features: int, out_features: int, ): super().__init__() self.fc = nn.Linear(in_features, out_features, bias=False) self.bn = nn.BatchNorm1d(out_features) def forward(self, x): x = self.fc(x) x = self.bn(x) return x class FocalConv2d(BasicConv2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]], halving: int, **kwargs ): super().__init__(in_channels, out_channels, kernel_size, **kwargs) self.halving = halving def forward(self, x): h = x.size(2) split_size = h // 2 ** self.halving z = x.split(split_size, dim=2) z = torch.cat([self.conv(_) for _ in z], dim=2) return F.leaky_relu(z, inplace=True) class BasicConv1d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int]], **kwargs ): super(BasicConv1d, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, bias=False, **kwargs) def forward(self, x): return self.conv(x) class HorizontalPyramidPooling(BasicConv2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, tuple[int, int]] = 1, use_avg_pool: bool = True, use_max_pool: bool = True, **kwargs ): super().__init__(in_channels, out_channels, kernel_size, **kwargs) self.use_avg_pool = use_avg_pool self.use_max_pool = use_max_pool assert use_avg_pool or use_max_pool, 'Pooling layer(s) required.' self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) def forward(self, x): if self.use_avg_pool and self.use_max_pool: x = self.avg_pool(x) + self.max_pool(x) elif self.use_avg_pool and not self.use_max_pool: x = self.avg_pool(x) elif not self.use_avg_pool and self.use_max_pool: x = self.max_pool(x) x = super().forward(x) return x