import random import torch import torch.nn as nn import torch.nn.functional as F from models.auto_encoder import AutoEncoder from models.hpm import HorizontalPyramidMatching from models.part_net import PartNet from utils.triplet_loss import BatchAllTripletLoss class RGBPartNet(nn.Module): def __init__( self, num_class: int = 74, ae_in_channels: int = 3, ae_feature_channels: int = 64, f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64), hpm_scales: tuple[int, ...] = (1, 2, 4), hpm_use_avg_pool: bool = True, hpm_use_max_pool: bool = True, fpfe_feature_channels: int = 32, fpfe_kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)), fpfe_paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)), fpfe_halving: tuple[int, ...] = (0, 2, 3), tfa_squeeze_ratio: int = 4, tfa_num_parts: int = 16, embedding_dims: int = 256, triplet_margin: float = 0.2 ): super().__init__() self.ae = AutoEncoder( num_class, ae_in_channels, ae_feature_channels, f_a_c_p_dims ) self.pn = PartNet( ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes, fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_parts ) out_channels = self.pn.tfa_in_channels self.hpm = HorizontalPyramidMatching( ae_feature_channels * 8, out_channels, hpm_scales, hpm_use_avg_pool, hpm_use_max_pool ) total_parts = sum(hpm_scales) + tfa_num_parts empty_fc = torch.empty(total_parts, out_channels, embedding_dims) self.fc_mat = nn.Parameter(empty_fc) self.ba_triplet_loss = BatchAllTripletLoss(triplet_margin) def fc(self, x): return x @ self.fc_mat def forward(self, x_c1, x_c2=None, y=None): # Step 0: Swap batch_size and time dimensions for next step # n, t, c, h, w x_c1 = x_c1.transpose(0, 1) if self.training: x_c2 = x_c2.transpose(0, 1) # Step 1: Disentanglement # t, n, c, h, w ((x_c_c1, x_p_c1), losses) = self._disentangle(x_c1, x_c2, y) # Step 2.a: HPM & Static Gait Feature Aggregation # t, n, c, h, w x_c = self.hpm(x_c_c1) # p, t, n, c x_c = x_c.mean(dim=1) # p, n, c # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation) # t, n, c, h, w x_p = self.pn(x_p_c1) # p, n, c # Step 3: Cat feature map together and fc x = torch.cat((x_c, x_p)) x = self.fc(x) if self.training: batch_all_triplet_loss = self.ba_triplet_loss(x, y) losses = torch.stack((*losses, batch_all_triplet_loss)) return losses else: return x.unsqueeze(1).view(-1) def _disentangle(self, x_c1, x_c2=None, y=None): t, n, c, h, w = x_c1.size() if self.training: # Decoded canonical features and Pose images x_c_c1, x_p_c1 = [], [] # Features required to calculate losses f_p_c1, f_p_c2 = [], [] xrecon_loss, cano_cons_loss = [], [] for t2 in range(t): t1 = random.randrange(t) output = self.ae(x_c1[t2], x_c1[t1], x_c2[t2], y) (x_c1_t2, f_p_t2, losses) = output # Decoded features or image (x_c_c1_t2, x_p_c1_t2) = x_c1_t2 # Canonical Features for HPM x_c_c1.append(x_c_c1_t2) # Pose image for Part Net x_p_c1.append(x_p_c1_t2) # Losses per time step # Used in pose similarity loss (f_p_c1_t2, f_p_c2_t2) = f_p_t2 f_p_c1.append(f_p_c1_t2) f_p_c2.append(f_p_c2_t2) # Cross reconstruction loss and canonical loss (xrecon_loss_t2, cano_cons_loss_t2) = losses xrecon_loss.append(xrecon_loss_t2) cano_cons_loss.append(cano_cons_loss_t2) x_c_c1 = torch.stack(x_c_c1) x_p_c1 = torch.stack(x_p_c1) # Losses xrecon_loss = torch.sum(torch.stack(xrecon_loss)) pose_sim_loss = self._pose_sim_loss(f_p_c1, f_p_c2) * 10 cano_cons_loss = torch.mean(torch.stack(cano_cons_loss)) return ((x_c_c1, x_p_c1), (xrecon_loss, pose_sim_loss, cano_cons_loss)) else: # evaluating x_c1 = x_c1.view(-1, c, h, w) x_c_c1, x_p_c1 = self.ae(x_c1) _, c_c, h_c, w_c = x_c_c1.size() x_c_c1 = x_c_c1.view(t, n, c_c, h_c, w_c) x_p_c1 = x_p_c1.view(t, n, c, h, w) return (x_c_c1, x_p_c1), None @staticmethod def _pose_sim_loss(f_p_c1: list[torch.Tensor], f_p_c2: list[torch.Tensor]) -> torch.Tensor: f_p_c1_mean = torch.stack(f_p_c1).mean(dim=0) f_p_c2_mean = torch.stack(f_p_c2).mean(dim=0) return F.mse_loss(f_p_c1_mean, f_p_c2_mean)