from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F class BatchTripletLoss(nn.Module): def __init__( self, is_hard: bool = True, margin: Optional[float] = 0.2, ): super().__init__() self.is_hard = is_hard self.margin = margin def forward(self, x, y): p, n, c = x.size() dist = self._batch_distance(x) flat_dist = dist.tril(-1) flat_dist = flat_dist[flat_dist != 0].view(p, -1) if self.is_hard: positive_negative_dist = self._hard_distance(dist, y, p, n) else: # is_all positive_negative_dist = self._all_distance(dist, y, p, n) if self.margin: all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1) loss_mean, non_zero_counts = self._none_zero_parted_mean(all_loss) return loss_mean, flat_dist, non_zero_counts else: # Soft margin all_loss = F.softplus(positive_negative_dist).view(p, -1) loss_mean = all_loss.mean(1) return loss_mean, flat_dist, None @staticmethod def _batch_distance(x): # Euclidean distance p x n x n x_squared_sum = torch.sum(x ** 2, dim=2) x1_squared_sum = x_squared_sum.unsqueeze(2) x2_squared_sum = x_squared_sum.unsqueeze(1) x1_times_x2_sum = x @ x.transpose(1, 2) dist = torch.sqrt( F.relu(x1_squared_sum - 2 * x1_times_x2_sum + x2_squared_sum) ) return dist @staticmethod def _hard_distance(dist, y, p, n): positive_mask = y.unsqueeze(1) == y.unsqueeze(2) negative_mask = y.unsqueeze(1) != y.unsqueeze(2) hard_positive = dist[positive_mask].view(p, n, -1).max(-1).values hard_negative = dist[negative_mask].view(p, n, -1).min(-1).values positive_negative_dist = hard_positive - hard_negative return positive_negative_dist @staticmethod def _all_distance(dist, y, p, n): positive_mask = y.unsqueeze(1) == y.unsqueeze(2) negative_mask = y.unsqueeze(1) != y.unsqueeze(2) all_positive = dist[positive_mask].view(p, n, -1, 1) all_negative = dist[negative_mask].view(p, n, 1, -1) positive_negative_dist = all_positive - all_negative return positive_negative_dist @staticmethod def _none_zero_parted_mean(all_loss): # Non-zero parted mean non_zero_counts = (all_loss != 0).sum(1).float() non_zero_mean = all_loss.sum(1) / non_zero_counts non_zero_mean[non_zero_counts == 0] = 0 return non_zero_mean, non_zero_counts class JointBatchTripletLoss(BatchTripletLoss): def __init__( self, hpm_num_parts: int, is_hard: bool = True, margins: tuple[float, float] = (0.2, 0.2) ): super().__init__(is_hard) self.hpm_num_parts = hpm_num_parts self.margin_hpm, self.margin_pn = margins def forward(self, x, y): p, n, c = x.size() dist = self._batch_distance(x) if self.is_hard: positive_negative_dist = self._hard_distance(dist, y, p, n) else: # is_all positive_negative_dist = self._all_distance(dist, y, p, n) hpm_part_loss = F.relu( self.margin_hpm + positive_negative_dist[:self.hpm_num_parts] ) pn_part_loss = F.relu( self.margin_pn + positive_negative_dist[self.hpm_num_parts:] ) all_loss = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1) non_zero_mean, non_zero_counts = self._none_zero_parted_mean(all_loss) return non_zero_mean, dist, non_zero_counts