summaryrefslogtreecommitdiff
path: root/models/auto_encoder.py
blob: 601348e458ecb16de3ef51bc4f206d3542a0c864 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torch.nn as nn
import torch.nn.functional as F

from models.layers import VGGConv2d, DCGANConvTranspose2d, BasicLinear


class Encoder(nn.Module):
    """Squeeze input feature map to lower dimension"""

    def __init__(
            self,
            in_channels: int = 3,
            feature_channels: int = 64,
            output_dims: tuple[int, int, int] = (128, 128, 64)
    ):
        super().__init__()
        self.feature_channels = feature_channels
        # Appearance features, canonical features, pose features
        (self.f_a_dim, self.f_c_dim, self.f_p_dim) = output_dims

        # Conv1      in_channels x 64 x 32
        #    -> feature_map_size x 64 x 32
        self.conv1 = VGGConv2d(in_channels, feature_channels)
        # MaxPool1 feature_map_size x 64 x 32
        #       -> feature_map_size x 32 x 16
        self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16))
        # Conv2 feature_map_size    x 32 x 16
        #   -> (feature_map_size*4) x 32 x 16
        self.conv2 = VGGConv2d(feature_channels, feature_channels * 4)
        # MaxPool2 (feature_map_size*4) x 32 x 16
        #       -> (feature_map_size*4) x 16 x 8
        self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8))
        # Conv3 (feature_map_size*4) x 16 x 8
        #    -> (feature_map_size*8) x 16 x 8
        self.conv3 = VGGConv2d(feature_channels * 4, feature_channels * 8)
        # Conv4 (feature_map_size*8) x 16 x 8
        #    -> (feature_map_size*8) x 16 x 8 (for large dataset)
        self.conv4 = VGGConv2d(feature_channels * 8, feature_channels * 8)
        # MaxPool3 (feature_map_size*8) x 16 x 8
        # ->       (feature_map_size*8) x  4 x 2
        self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2))

        embedding_dim = sum(output_dims)
        # FC (feature_map_size*8) * 4 * 2 -> 320
        self.fc = BasicLinear(feature_channels * 8 * 2 * 4, embedding_dim)

    def forward(self, x):
        x = self.conv1(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.max_pool3(x)
        x = x.view(-1, (self.feature_channels * 8) * 2 * 4)
        embedding = self.fc(x)

        f_appearance, f_canonical, f_pose = embedding.split(
            (self.f_a_dim, self.f_c_dim, self.f_p_dim), dim=1
        )
        return f_appearance, f_canonical, f_pose


class Decoder(nn.Module):
    """Upscale embedding to original image"""

    def __init__(
            self,
            out_channels: int = 3,
            feature_channels: int = 64,
            input_dims: tuple[int, int, int] = (128, 128, 64)
    ):
        super().__init__()
        self.feature_channels = feature_channels

        embedding_dim = sum(input_dims)
        # FC 320 -> (feature_map_size*8) * 4 * 2
        self.fc = BasicLinear(embedding_dim, feature_channels * 8 * 2 * 4)

        # TransConv1 (feature_map_size*8) x 4 x 2
        #         -> (feature_map_size*4) x 8 x 4
        self.trans_conv1 = DCGANConvTranspose2d(feature_channels * 8,
                                                feature_channels * 4)
        # TransConv2 (feature_map_size*4) x  8 x 4
        #         -> (feature_map_size*2) x 16 x 8
        self.trans_conv2 = DCGANConvTranspose2d(feature_channels * 4,
                                                feature_channels * 2)
        # TransConv3 (feature_map_size*2) x 16 x  8
        #         ->  feature_map_size    x 32 x 16
        self.trans_conv3 = DCGANConvTranspose2d(feature_channels * 2,
                                                feature_channels)
        # TransConv4 feature_map_size x 32 x 16
        #         ->      in_channels x 64 x 32
        self.trans_conv4 = DCGANConvTranspose2d(feature_channels, out_channels,
                                                is_last_layer=True)

    def forward(self, f_appearance, f_canonical, f_pose):
        x = torch.cat((f_appearance, f_canonical, f_pose), dim=1)
        x = self.fc(x)
        x = F.relu(x.view(-1, self.feature_channels * 8, 4, 2), inplace=True)
        x = self.trans_conv1(x)
        x = self.trans_conv2(x)
        x = self.trans_conv3(x)
        x = torch.sigmoid(self.trans_conv4(x))

        return x