1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
import torch
from torch import nn as nn
from torch.nn import functional as F
class Encoder(nn.Module):
def __init__(self, in_channels: int, opt):
super(Encoder, self).__init__()
self.opt = opt
self.em_dim = opt.em_dim
nf = 64
# Cx[HxW]
# Conv1 3x64x32 -> 64x64x32
self.conv1 = nn.Conv2d(in_channels, nf, kernel_size=3, padding=1)
self.batch_norm1 = nn.BatchNorm2d(nf)
# MaxPool1 64x64x32 -> 64x32x16
self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16))
# Conv2 64x32x16 -> 256x32x16
self.conv2 = nn.Conv2d(nf, nf * 4, kernel_size=3, padding=1)
self.batch_norm2 = nn.BatchNorm2d(nf * 4)
# MaxPool2 256x32x16 -> 256x16x8
self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8))
# Conv3 256x16x8 -> 512x16x8
self.conv3 = nn.Conv2d(nf * 4, nf * 8, kernel_size=3, padding=1)
self.batch_norm3 = nn.BatchNorm2d(nf * 8)
# Conv4 512x16x8 -> 512x16x8 (for large dataset)
self.conv4 = nn.Conv2d(nf * 8, nf * 8, kernel_size=3, padding=1)
self.batch_norm4 = nn.BatchNorm2d(nf * 8)
# MaxPool3 512x16x8 -> 512x4x2
self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2))
# FC 512*4*2 -> 320
self.fc = nn.Linear(nf * 8 * 2 * 4, self.em_dim)
self.batch_norm_fc = nn.BatchNorm1d(self.em_dim)
def forward(self, x):
x = F.leaky_relu(self.batch_norm1(self.conv1(x)), 0.2)
x = self.max_pool1(x)
x = F.leaky_relu(self.batch_norm2(self.conv2(x)), 0.2)
x = self.max_pool2(x)
x = F.leaky_relu(self.batch_norm3(self.conv3(x)), 0.2)
x = F.leaky_relu(self.batch_norm4(self.conv4(x)), 0.2)
x = self.max_pool3(x)
x = x.view(-1, (64 * 8) * 2 * 4)
embedding = self.batch_norm_fc(self.fc(x))
fa, fgs, fgd = embedding.split(
(self.opt.fa_dim, self.opt.fg_dim / 2, self.opt.fg_dim / 2), dim=1
)
return fa, fgs, fgd
class Decoder(nn.Module):
def __init__(self, out_channels: int, opt):
super(Decoder, self).__init__()
self.em_dim = opt.em_dim
nf = 64
# Cx[HxW]
# FC 320 -> 512*4*2
self.fc = nn.Linear(self.em_dim, nf * 8 * 2 * 4)
self.batch_norm_fc = nn.BatchNorm1d(nf * 8 * 2 * 4)
# TransConv1 512x4x2 -> 256x8x4
self.trans_conv1 = nn.ConvTranspose2d(nf * 8, nf * 4, kernel_size=4,
stride=2, padding=1)
self.batch_norm1 = nn.BatchNorm2d(nf * 4)
# TransConv2 256x8x4 -> 128x16x8
self.trans_conv2 = nn.ConvTranspose2d(nf * 4, nf * 2, kernel_size=4,
stride=2, padding=1)
self.batch_norm2 = nn.BatchNorm2d(nf * 2)
# TransConv3 128x16x8 -> 64x32x16
self.trans_conv3 = nn.ConvTranspose2d(nf * 2, nf, kernel_size=4,
stride=2, padding=1)
self.batch_norm3 = nn.BatchNorm2d(nf)
# TransConv4 3x32x16
self.trans_conv4 = nn.ConvTranspose2d(nf, out_channels, kernel_size=4,
stride=2, padding=1)
def forward(self, fa, fgs, fgd):
x = torch.cat((fa, fgs, fgd), dim=1).view(-1, self.em_dim)
x = F.leaky_relu(self.batch_norm_fc(self.fc(x)), 0.2)
x = x.view(-1, 64 * 8, 4, 2)
x = F.leaky_relu(self.batch_norm1(self.trans_conv1(x)), 0.2)
x = F.leaky_relu(self.batch_norm2(self.trans_conv2(x)), 0.2)
x = F.leaky_relu(self.batch_norm3(self.trans_conv3(x)), 0.2)
x = F.sigmoid(self.trans_conv4(x))
return x
|