summaryrefslogtreecommitdiff
path: root/models/layers.py
blob: 2dc87a1dbaf6f37b8f4c4a2c8263b125a3c5390d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from typing import Union, Tuple

import torch
import torch.nn.functional as F
import torch.nn as nn


class BasicConv2d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]],
            **kwargs
    ):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
                              bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)


class VGGConv2d(BasicConv2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]] = 3,
            padding: int = 1,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size,
                         padding=padding, **kwargs)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.leaky_relu(x, 0.2, inplace=True)


class BasicConvTranspose2d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]],
            **kwargs
    ):
        super().__init__()
        self.trans_conv = nn.ConvTranspose2d(in_channels, out_channels,
                                             kernel_size, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.trans_conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)


class DCGANConvTranspose2d(BasicConvTranspose2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]] = 4,
            stride: int = 2,
            padding: int = 1,
            is_last_layer: bool = False,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size,
                         stride=stride, padding=padding, **kwargs)
        self.is_last_layer = is_last_layer

    def forward(self, x):
        if self.is_last_layer:
            return self.trans_conv(x)
        else:
            return super().forward(x)


class FocalConv2d(BasicConv2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]],
            halving: int,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        self.halving = halving

    def forward(self, x):
        h = x.size(2)
        split_size = h // 2 ** self.halving
        z = x.split(split_size, dim=2)
        z = torch.cat([self.conv(_) for _ in z], dim=2)
        return F.leaky_relu(z, inplace=True)


class BasicConv1d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int]],
            **kwargs
    ):
        super(BasicConv1d, self).__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
                              bias=False, **kwargs)

    def forward(self, x):
        return self.conv(x)