1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
from typing import Union, Tuple
import torch
import torch.nn as nn
class FocalConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
halving: int,
**kwargs
):
super(FocalConv2d, self).__init__()
self.halving = halving
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
bias=False, **kwargs)
def forward(self, x):
h = x.size(2)
split_size = h // 2 ** self.halving
z = x.split(split_size, dim=2)
z = torch.cat([self.conv(_) for _ in z], dim=2)
return z
class BasicConv1d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]],
**kwargs
):
super(BasicConv1d, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
bias=False, **kwargs)
def forward(self, x):
return self.conv(x)
|