1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
from typing import Union, Tuple
import torch
import torch.nn.functional as F
import torch.nn as nn
class BasicConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
**kwargs
):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class VGGConv2d(BasicConv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]] = 3,
padding: int = 1,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size,
padding=padding, **kwargs)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.leaky_relu(x, 0.2, inplace=True)
class BasicConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
**kwargs
):
super().__init__()
self.trans_conv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.trans_conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class DCGANConvTranspose2d(BasicConvTranspose2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]] = 4,
stride: int = 2,
padding: int = 1,
is_last_layer: bool = False,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, **kwargs)
self.is_last_layer = is_last_layer
def forward(self, x):
if self.is_last_layer:
return self.trans_conv(x)
else:
return super().forward(x)
class FocalConv2d(BasicConv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
halving: int,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.halving = halving
def forward(self, x):
h = x.size(2)
split_size = h // 2 ** self.halving
z = x.split(split_size, dim=2)
z = torch.cat([self.conv(_) for _ in z], dim=2)
return F.leaky_relu(z, inplace=True)
class BasicConv1d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]],
**kwargs
):
super(BasicConv1d, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
bias=False, **kwargs)
def forward(self, x):
return self.conv(x)
|