summaryrefslogtreecommitdiff
path: root/models/layers.py
blob: cba6e47a5d34b29ab1f48851405f26a58ec0ece8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from typing import Union

import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicConv2d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]],
            **kwargs
    ):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
                              bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)


class VGGConv2d(BasicConv2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]] = 3,
            padding: int = 1,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size,
                         padding=padding, **kwargs)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.leaky_relu(x, 0.2, inplace=True)


class BasicConvTranspose2d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]],
            **kwargs
    ):
        super().__init__()
        self.trans_conv = nn.ConvTranspose2d(in_channels, out_channels,
                                             kernel_size, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.trans_conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)


class DCGANConvTranspose2d(BasicConvTranspose2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]] = 4,
            stride: int = 2,
            padding: int = 1,
            is_last_layer: bool = False,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size,
                         stride=stride, padding=padding, **kwargs)
        self.is_last_layer = is_last_layer

    def forward(self, x):
        if self.is_last_layer:
            return self.trans_conv(x)
        else:
            return super().forward(x)


class FocalConv2d(BasicConv2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]],
            halving: int,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        self.halving = halving

    def forward(self, x):
        h = x.size(2)
        split_size = h // 2 ** self.halving
        z = x.split(split_size, dim=2)
        z = torch.cat([self.conv(_) for _ in z], dim=2)
        return F.leaky_relu(z, inplace=True)


class BasicConv1d(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int]],
            **kwargs
    ):
        super(BasicConv1d, self).__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
                              bias=False, **kwargs)

    def forward(self, x):
        return self.conv(x)


class HorizontalPyramidPooling(BasicConv2d):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, tuple[int, int]] = 1,
            use_avg_pool: bool = False,
            **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        if use_avg_pool:
            self.pool = nn.AdaptiveAvgPool2d(1)
        else:
            self.pool = nn.AdaptiveMaxPool2d(1)

    def forward(self, x):
        x = self.pool(x)
        x = super().forward(x)
        return x