1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
import os
from datetime import datetime
from typing import Union, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from models.rgb_part_net import RGBPartNet
from utils.configuration import DataloaderConfiguration, \
HyperparameterConfiguration, DatasetConfiguration, ModelConfiguration, \
SystemConfiguration
from utils.dataset import CASIAB, ClipConditions, ClipViews, ClipClasses
from utils.sampler import TripletSampler
class Model:
def __init__(
self,
system_config: SystemConfiguration,
model_config: ModelConfiguration,
hyperparameter_config: HyperparameterConfiguration
):
self.disable_acc = system_config.get('disable_acc', False)
if self.disable_acc:
self.device = torch.device('cpu')
else: # Enable accelerator
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
print('No accelerator available, fallback to CPU.')
self.device = torch.device('cpu')
self.save_dir = system_config.get('save_dir', 'runs')
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
self.checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')
self.log_dir = os.path.join(self.save_dir, 'logs')
for dir_ in (self.log_dir, self.checkpoint_dir):
if not os.path.exists(dir_):
os.mkdir(dir_)
self.meta = model_config
self.hp = hyperparameter_config
self.curr_iter = self.meta.get('restore_iter', 0)
self.total_iter = self.meta.get('total_iter', 80_000)
self.curr_iters = self.meta.get('restore_iters', (0, 0, 0))
self.total_iters = self.meta.get('total_iters', (80000, 80000, 80000))
self.is_train: bool = True
self.train_size: int = 74
self.in_channels: int = 3
self.pr: Optional[int] = None
self.k: Optional[int] = None
self._gallery_dataset_meta: Optional[dict[str, list]] = None
self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None
self._model_name: str = self.meta.get('name', 'RGB-GaitPart')
self._hp_sig: str = self._make_signature(self.hp)
self._dataset_sig: str = 'undefined'
self.rgb_pn: Optional[RGBPartNet] = None
self.optimizer: Optional[optim.Adam] = None
self.scheduler: Optional[optim.lr_scheduler.StepLR] = None
self.writer: Optional[SummaryWriter] = None
self.CASIAB_GALLERY_SELECTOR = {
'selector': {'conditions': ClipConditions({r'nm-0[1-4]'})}
}
self.CASIAB_PROBE_SELECTORS = {
'nm': {'selector': {'conditions': ClipConditions({r'nm-0[5-6]'})}},
'bg': {'selector': {'conditions': ClipConditions({r'bg-0[1-2]'})}},
'cl': {'selector': {'conditions': ClipConditions({r'cl-0[1-2]'})}},
}
@property
def _model_sig(self) -> str:
return '_'.join(
(self._model_name, str(self.curr_iter), str(self.total_iter))
)
@property
def _checkpoint_sig(self) -> str:
return '_'.join((self._model_sig, self._hp_sig, self._dataset_sig,
str(self.pr), str(self.k)))
@property
def _checkpoint_name(self) -> str:
return os.path.join(self.checkpoint_dir, self._checkpoint_sig)
@property
def _log_sig(self) -> str:
return '_'.join((self._model_name, str(self.total_iter), self._hp_sig,
self._dataset_sig, str(self.pr), str(self.k)))
@property
def _log_name(self) -> str:
return os.path.join(self.log_dir, self._log_sig)
def fit_all(
self,
dataset_config: DatasetConfiguration,
dataset_selectors: dict[
str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
):
for (curr_iter, total_iter, (condition, selector)) in zip(
self.curr_iters, self.total_iters, dataset_selectors.items()
):
print(f'Training model {condition} ...')
# Skip finished model
if curr_iter == total_iter:
continue
# Check invalid restore iter
elif curr_iter > total_iter:
raise ValueError("Restore iter '{}' should less than total "
"iter '{}'".format(curr_iter, total_iter))
self.curr_iter = curr_iter
self.total_iter = total_iter
self.fit(
dict(**dataset_config, **{'selector': selector}),
dataloader_config
)
def fit(
self,
dataset_config: DatasetConfiguration,
dataloader_config: DataloaderConfiguration,
):
self.is_train = True
dataset = self._parse_dataset_config(dataset_config)
dataloader = self._parse_dataloader_config(dataset, dataloader_config)
# Prepare for model, optimizer and scheduler
model_hp = self.hp.get('model', {})
optim_hp: dict = self.hp.get('optimizer', {}).copy()
ae_optim_hp = optim_hp.pop('auto_encoder', {})
pn_optim_hp = optim_hp.pop('part_net', {})
hpm_optim_hp = optim_hp.pop('hpm', {})
fc_optim_hp = optim_hp.pop('fc', {})
sched_hp = self.hp.get('scheduler', {})
self.rgb_pn = RGBPartNet(self.train_size, self.in_channels, **model_hp)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
self.optimizer = optim.Adam([
{'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
{'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
{'params': self.rgb_pn.hpm.parameters(), **hpm_optim_hp},
{'params': self.rgb_pn.fc_mat, **fc_optim_hp},
], **optim_hp)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, **sched_hp)
self.writer = SummaryWriter(self._log_name)
self.rgb_pn.train()
# Init weights at first iter
if self.curr_iter == 0:
self.rgb_pn.apply(self.init_weights)
else: # Load saved state dicts
checkpoint = torch.load(self._checkpoint_name)
iter_, loss = checkpoint['iter'], checkpoint['loss']
print('{0:5d} loss: {1:.3f}'.format(iter_, loss))
self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optim_state_dict'])
# Training start
start_time = datetime.now()
running_loss = torch.zeros(4).to(self.device)
print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}",
f"{'CanoCons':^8} {'BATrip':^8} {'LR':^9}")
for (batch_c1, batch_c2) in dataloader:
self.curr_iter += 1
# Zero the parameter gradients
self.optimizer.zero_grad()
# forward + backward + optimize
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
y = batch_c1['label'].to(self.device)
losses = self.rgb_pn(x_c1, x_c2, y)
loss = losses.sum()
loss.backward()
self.optimizer.step()
# Step scheduler
self.scheduler.step()
# Statistics and checkpoint
running_loss += losses.detach()
# Write losses to TensorBoard
self.writer.add_scalar('Loss/all', loss, self.curr_iter)
self.writer.add_scalars('Loss/details', dict(zip([
'Cross reconstruction loss', 'Pose similarity loss',
'Canonical consistency loss', 'Batch All triplet loss'
], losses)), self.curr_iter)
if self.curr_iter % 100 == 0:
print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}',
'{:f} {:f} {:f} {:f}'.format(*running_loss / 100),
f'{self.scheduler.get_last_lr()[0]:.3e}')
running_loss.zero_()
if self.curr_iter % 1000 == 0:
torch.save({
'iter': self.curr_iter,
'model_state_dict': self.rgb_pn.state_dict(),
'optim_state_dict': self.optimizer.state_dict(),
'loss': loss,
}, self._checkpoint_name)
print(datetime.now() - start_time, 'used')
start_time = datetime.now()
if self.curr_iter == self.total_iter:
self.writer.close()
break
def predict_all(
self,
iter_: int,
dataset_config: DatasetConfiguration,
dataset_selectors: dict[
str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
],
dataloader_config: DataloaderConfiguration,
) -> dict[str, torch.Tensor]:
self.is_train = False
# Split gallery and probe dataset
gallery_dataloader, probe_dataloaders = self._split_gallery_probe(
dataset_config, dataloader_config
)
# Get pretrained models at iter_
checkpoints = self._load_pretrained(
iter_, dataset_config, dataset_selectors
)
# Init models
model_hp = self.hp.get('model', {})
self.rgb_pn = RGBPartNet(ae_in_channels=self.in_channels, **model_hp)
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
self.rgb_pn.eval()
gallery_samples, probe_samples = [], {}
# Gallery
checkpoint = torch.load(list(checkpoints.values())[0])
self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
for sample in tqdm(gallery_dataloader,
desc='Transforming gallery', unit='clips'):
label = sample.pop('label').item()
clip = sample.pop('clip').to(self.device)
feature = self.rgb_pn(clip).detach()
gallery_samples.append({
**{'label': label},
**sample,
**{'feature': feature}
})
gallery_samples = default_collate(gallery_samples)
# Probe
for (condition, dataloader) in probe_dataloaders.items():
checkpoint = torch.load(checkpoints[condition])
self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
probe_samples[condition] = []
for sample in tqdm(dataloader,
desc=f'Transforming probe {condition}',
unit='clips'):
label = sample.pop('label').item()
clip = sample.pop('clip').to(self.device)
feature = self.rgb_pn(clip).detach()
probe_samples[condition].append({
**{'label': label},
**sample,
**{'feature': feature}
})
for (k, v) in probe_samples.items():
probe_samples[k] = default_collate(v)
return self._evaluate(gallery_samples, probe_samples)
def _evaluate(
self,
gallery_samples: dict[str, Union[list[str], torch.Tensor]],
probe_samples: dict[str, dict[str, Union[list[str], torch.Tensor]]],
num_ranks: int = 5
) -> dict[str, torch.Tensor]:
probe_conditions = self._probe_datasets_meta.keys()
gallery_views_meta = self._gallery_dataset_meta['views']
probe_views_meta = list(self._probe_datasets_meta.values())[0]['views']
accuracy = {
condition: torch.empty(
len(gallery_views_meta), len(probe_views_meta), num_ranks
)
for condition in self._probe_datasets_meta.keys()
}
(labels_g, _, views_g, features_g) = gallery_samples.values()
views_g = np.asarray(views_g)
for (v_g_i, view_g) in enumerate(gallery_views_meta):
gallery_view_mask = (views_g == view_g)
f_g = features_g[gallery_view_mask]
y_g = labels_g[gallery_view_mask]
for condition in probe_conditions:
probe_samples_c = probe_samples[condition]
accuracy_c = accuracy[condition]
(labels_p, _, views_p, features_p) = probe_samples_c.values()
views_p = np.asarray(views_p)
for (v_p_i, view_p) in enumerate(probe_views_meta):
probe_view_mask = (views_p == view_p)
f_p = features_p[probe_view_mask]
y_p = labels_p[probe_view_mask]
# Euclidean distance
f_p_squared_sum = torch.sum(f_p ** 2, dim=1).unsqueeze(1)
f_g_squared_sum = torch.sum(f_g ** 2, dim=1).unsqueeze(0)
f_p_times_f_g_sum = f_p @ f_g.T
dist = torch.sqrt(F.relu(
f_p_squared_sum - 2*f_p_times_f_g_sum + f_g_squared_sum
))
# Ranked accuracy
rank_mask = dist.argsort(1)[:, :num_ranks]
positive_mat = torch.eq(y_p.unsqueeze(1),
y_g[rank_mask]).cumsum(1).gt(0)
positive_counts = positive_mat.sum(0)
total_counts, _ = dist.size()
accuracy_c[v_g_i, v_p_i, :] = positive_counts / total_counts
return accuracy
def _load_pretrained(
self,
iter_: int,
dataset_config: DatasetConfiguration,
dataset_selectors: dict[
str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
]
) -> dict[str, str]:
checkpoints = {}
self.curr_iter = iter_
for (k, v) in dataset_selectors.items():
self._dataset_sig = self._make_signature(
dict(**dataset_config, **v),
popped_keys=['root_dir', 'cache_on']
)
checkpoints[k] = self._checkpoint_name
return checkpoints
def _split_gallery_probe(
self,
dataset_config: DatasetConfiguration,
dataloader_config: DataloaderConfiguration,
) -> tuple[DataLoader, dict[str, DataLoader]]:
dataset_name = dataset_config.get('name', 'CASIA-B')
if dataset_name == 'CASIA-B':
gallery_dataset = self._parse_dataset_config(
dict(**dataset_config, **self.CASIAB_GALLERY_SELECTOR)
)
self._gallery_dataset_meta = gallery_dataset.metadata
gallery_dataloader = self._parse_dataloader_config(
gallery_dataset, dataloader_config
)
probe_datasets = {
condition: self._parse_dataset_config(
dict(**dataset_config, **selector)
)
for (condition, selector) in self.CASIAB_PROBE_SELECTORS.items()
}
self._probe_datasets_meta = {
condition: dataset.metadata
for (condition, dataset) in probe_datasets.items()
}
probe_dataloaders = {
condtion: self._parse_dataloader_config(
dataset, dataloader_config
)
for (condtion, dataset) in probe_datasets.items()
}
elif dataset_name == 'FVG':
# TODO
gallery_dataloader = None
probe_dataloaders = None
else:
raise ValueError('Invalid dataset: {0}'.format(dataset_name))
return gallery_dataloader, probe_dataloaders
@staticmethod
def init_weights(m):
if isinstance(m, nn.modules.conv._ConvNd):
nn.init.normal_(m.weight, 0.0, 0.01)
elif isinstance(m, nn.modules.batchnorm._NormBase):
nn.init.normal_(m.weight, 1.0, 0.01)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
elif isinstance(m, RGBPartNet):
nn.init.xavier_uniform_(m.fc_mat)
def _parse_dataset_config(
self,
dataset_config: DatasetConfiguration
) -> Union[CASIAB]:
self.train_size = dataset_config.get('train_size', 74)
self.in_channels = dataset_config.get('num_input_channels', 3)
self._dataset_sig = self._make_signature(
dataset_config,
popped_keys=['root_dir', 'cache_on']
)
config: dict = dataset_config.copy()
name = config.pop('name', 'CASIA-B')
if name == 'CASIA-B':
return CASIAB(**config, is_train=self.is_train)
elif name == 'FVG':
# TODO
pass
raise ValueError('Invalid dataset: {0}'.format(name))
def _parse_dataloader_config(
self,
dataset: Union[CASIAB],
dataloader_config: DataloaderConfiguration
) -> DataLoader:
config: dict = dataloader_config.copy()
(self.pr, self.k) = config.pop('batch_size', (8, 16))
if self.is_train:
triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
return DataLoader(dataset,
batch_sampler=triplet_sampler,
collate_fn=self._batch_splitter,
**config)
else: # is_test
return DataLoader(dataset, **config)
def _batch_splitter(
self,
batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
) -> tuple[dict[str, Union[list[str], torch.Tensor]],
dict[str, Union[list[str], torch.Tensor]]]:
"""
Disentanglement need two random conditions, this function will
split pr * k * 2 samples to 2 dicts each containing pr * k
samples. labels and clip data are tensor, and others are list.
"""
_batch = [[], []]
for i in range(0, self.pr * self.k * 2, self.k * 2):
_batch[0] += batch[i:i + self.k]
_batch[1] += batch[i + self.k:i + self.k * 2]
return default_collate(_batch[0]), default_collate(_batch[1])
def _make_signature(self,
config: dict,
popped_keys: Optional[list] = None) -> str:
_config = config.copy()
if popped_keys:
for key in popped_keys:
_config.pop(key, None)
return self._gen_sig(list(_config.values()))
def _gen_sig(self, values: Union[tuple, list, set, str, int, float]) -> str:
strings = []
for v in values:
if isinstance(v, str):
strings.append(v)
elif isinstance(v, (tuple, list)):
strings.append(self._gen_sig(v))
elif isinstance(v, set):
strings.append(self._gen_sig(sorted(list(v))))
elif isinstance(v, dict):
strings.append(self._gen_sig(list(v.values())))
else:
strings.append(str(v))
return '_'.join(strings)
|