summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
blob: 845a477b8a4347c5e6f6f58506822e4bb12778e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from typing import Tuple

import torch
import torch.nn as nn

from models.auto_encoder import AutoEncoder
from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet
from utils.triplet_loss import BatchAllTripletLoss


class RGBPartNet(nn.Module):
    def __init__(
            self,
            ae_in_channels: int = 3,
            ae_feature_channels: int = 64,
            f_a_c_p_dims: Tuple[int, int, int] = (128, 128, 64),
            hpm_use_1x1conv: bool = False,
            hpm_scales: Tuple[int, ...] = (1, 2, 4),
            hpm_use_avg_pool: bool = True,
            hpm_use_max_pool: bool = True,
            fpfe_feature_channels: int = 32,
            fpfe_kernel_sizes: Tuple[Tuple, ...] = ((5, 3), (3, 3), (3, 3)),
            fpfe_paddings: Tuple[Tuple, ...] = ((2, 1), (1, 1), (1, 1)),
            fpfe_halving: Tuple[int, ...] = (0, 2, 3),
            tfa_squeeze_ratio: int = 4,
            tfa_num_parts: int = 16,
            embedding_dims: int = 256,
            triplet_margins: Tuple[float, float] = (0.2, 0.2),
            image_log_on: bool = False
    ):
        super().__init__()
        (self.f_a_dim, self.f_c_dim, self.f_p_dim) = f_a_c_p_dims
        self.hpm_num_parts = sum(hpm_scales)
        self.image_log_on = image_log_on

        self.ae = AutoEncoder(
            ae_in_channels, ae_feature_channels, f_a_c_p_dims
        )
        self.pn = PartNet(
            ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,
            fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_parts
        )
        out_channels = self.pn.tfa_in_channels
        self.hpm = HorizontalPyramidMatching(
            ae_feature_channels * 2, out_channels, hpm_use_1x1conv,
            hpm_scales, hpm_use_avg_pool, hpm_use_max_pool
        )
        self.num_total_parts = self.hpm_num_parts + tfa_num_parts
        empty_fc = torch.empty(self.num_total_parts,
                               out_channels, embedding_dims)
        self.fc_mat = nn.Parameter(empty_fc)

        (hpm_margin, pn_margin) = triplet_margins
        self.hpm_ba_trip = BatchAllTripletLoss(hpm_margin)
        self.pn_ba_trip = BatchAllTripletLoss(pn_margin)

    def fc(self, x):
        return x @ self.fc_mat

    def forward(self, x_c1, x_c2=None, y=None):
        # Step 1: Disentanglement
        # n, t, c, h, w
        ((x_c, x_p), losses, images) = self._disentangle(x_c1, x_c2)

        # Step 2.a: Static Gait Feature Aggregation & HPM
        # n, c, h, w
        x_c = self.hpm(x_c)
        # p, n, c

        # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
        # n, t, c, h, w
        x_p = self.pn(x_p)
        # p, n, c

        # Step 3: Cat feature map together and fc
        x = torch.cat((x_c, x_p))
        x = self.fc(x)

        if self.training:
            y = y.T
            hpm_ba_trip = self.hpm_ba_trip(
                x[:self.hpm_num_parts], y[:self.hpm_num_parts]
            )
            pn_ba_trip = self.pn_ba_trip(
                x[self.hpm_num_parts:], y[self.hpm_num_parts:]
            )
            losses = (*losses, hpm_ba_trip, pn_ba_trip)
            return losses, images
        else:
            return x.unsqueeze(1).view(-1)

    def _disentangle(self, x_c1_t2, x_c2_t2=None):
        n, t, c, h, w = x_c1_t2.size()
        device = x_c1_t2.device
        x_c1_t1 = x_c1_t2[:, torch.randperm(t), :, :, :]
        if self.training:
            ((f_a_, f_c_, f_p_), losses) = self.ae(x_c1_t2, x_c1_t1, x_c2_t2)
            # Decode features
            with torch.no_grad():
                x_c = self._decode_cano_feature(f_c_, n, t, device)
                x_p = self._decode_pose_feature(f_p_, n, t, c, h, w, device)

                i_a, i_c, i_p = None, None, None
                if self.image_log_on:
                    i_a = self._decode_appr_feature(f_a_, n, t, c, h, w, device)
                    # Continue decoding canonical features
                    i_c = self.ae.decoder.trans_conv3(x_c)
                    i_c = torch.sigmoid(self.ae.decoder.trans_conv4(i_c))
                    i_p = x_p

            return (x_c, x_p), losses, (i_a, i_c, i_p)

        else:  # evaluating
            f_c_, f_p_ = self.ae(x_c1_t2)
            x_c = self._decode_cano_feature(f_c_, n, t, device)
            x_p = self._decode_pose_feature(f_p_, n, t, c, h, w, device)
            return (x_c, x_p), None, None

    def _decode_appr_feature(self, f_a_, n, t, c, h, w, device):
        # Decode appearance features
        x_a_ = self.ae.decoder(
            f_a_,
            torch.zeros((n * t, self.f_c_dim), device=device),
            torch.zeros((n * t, self.f_p_dim), device=device)
        )
        x_a = x_a_.view(n, t, c, h, w)
        return x_a

    def _decode_cano_feature(self, f_c_, n, t, device):
        # Decode average canonical features to higher dimension
        f_c = f_c_.view(n, t, -1)
        x_c = self.ae.decoder(
            torch.zeros((n, self.f_a_dim), device=device),
            f_c.mean(1),
            torch.zeros((n, self.f_p_dim), device=device),
            cano_only=True
        )
        return x_c

    def _decode_pose_feature(self, f_p_, n, t, c, h, w, device):
        # Decode pose features to images
        x_p_ = self.ae.decoder(
            torch.zeros((n * t, self.f_a_dim), device=device),
            torch.zeros((n * t, self.f_c_dim), device=device),
            f_p_
        )
        x_p = x_p_.view(n, t, c, h, w)
        return x_p