summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
blob: 81f198e0a30ea9e38486cdc76a15ee417cff4902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from typing import Tuple

import torch
import torch.nn as nn

from models.auto_encoder import AutoEncoder
from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet


class RGBPartNet(nn.Module):
    def __init__(
            self,
            ae_in_channels: int = 3,
            ae_in_size: Tuple[int, int] = (64, 48),
            ae_feature_channels: int = 64,
            f_a_c_p_dims: Tuple[int, int, int] = (128, 128, 64),
            hpm_scales: Tuple[int, ...] = (1, 2, 4),
            hpm_use_avg_pool: bool = True,
            hpm_use_max_pool: bool = True,
            tfa_squeeze_ratio: int = 4,
            tfa_num_parts: int = 16,
            embedding_dims: Tuple[int] = (256, 256),
            image_log_on: bool = False
    ):
        super().__init__()
        self.h, self.w = ae_in_size
        (self.f_a_dim, self.f_c_dim, self.f_p_dim) = f_a_c_p_dims
        self.image_log_on = image_log_on

        self.ae = AutoEncoder(
            ae_in_channels, ae_in_size, ae_feature_channels, f_a_c_p_dims
        )
        self.pn_in_channels = ae_feature_channels * 2
        self.hpm = HorizontalPyramidMatching(
            self.pn_in_channels, embedding_dims[0], hpm_scales,
            hpm_use_avg_pool, hpm_use_max_pool
        )
        self.pn = PartNet(self.pn_in_channels, embedding_dims[1],
                          tfa_num_parts, tfa_squeeze_ratio)

        self.num_parts = self.hpm.num_parts + tfa_num_parts

    def forward(self, x_c1, x_c2=None):
        # Step 1: Disentanglement
        # n, t, c, h, w
        ((x_c, x_p), images, f_loss) = self._disentangle(x_c1, x_c2)

        # Step 2.a: Static Gait Feature Aggregation & HPM
        # n, c, h, w
        x_c = self.hpm(x_c)
        # p, n, d

        # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
        # n, t, c, h, w
        x_p = self.pn(x_p)
        # p, n, d

        if self.training:
            return x_c.transpose(0, 1), x_p.transpose(0, 1), images, f_loss
        else:
            return torch.cat((x_c, x_p)).unsqueeze(1).view(-1)

    def _disentangle(self, x_c1_t2, x_c2_t2=None):
        n, t, c, h, w = x_c1_t2.size()
        device = x_c1_t2.device
        if self.training:
            x_c1_t1 = x_c1_t2[:, torch.randperm(t), :, :, :]
            (f_a_, f_c_, f_p_), f_loss = self.ae(x_c1_t2, x_c1_t1, x_c2_t2)
            # Decode features
            x_c = self._decode_cano_feature(f_c_, n, t, device)
            x_p_ = self._decode_pose_feature(f_p_, n, t, device)
            x_p = x_p_.view(n, t, self.pn_in_channels, self.h // 4, self.w // 4)

            i_a, i_c, i_p = None, None, None
            if self.image_log_on:
                with torch.no_grad():
                    i_a = self._decode_appr_feature(f_a_, n, t, device)
                    # Continue decoding canonical features
                    i_c = self.ae.decoder.trans_conv3(x_c)
                    i_c = torch.sigmoid(self.ae.decoder.trans_conv4(i_c))
                    i_p_ = self.ae.decoder.trans_conv3(x_p_)
                    i_p_ = torch.sigmoid(self.ae.decoder.trans_conv4(i_p_))
                    i_p = i_p_.view(n, t, c, h, w)

            return (x_c, x_p), (i_a, i_c, i_p), f_loss

        else:  # evaluating
            f_c_, f_p_ = self.ae(x_c1_t2)
            x_c = self._decode_cano_feature(f_c_, n, t, device)
            x_p_ = self._decode_pose_feature(f_p_, n, t, device)
            x_p = x_p_.view(n, t, self.pn_in_channels, self.h // 4, self.w // 4)
            return (x_c, x_p), None, None

    def _decode_appr_feature(self, f_a_, n, t, device):
        # Decode appearance features
        f_a = f_a_.view(n, t, -1)
        x_a = self.ae.decoder(
            f_a.mean(1),
            torch.zeros((n, self.f_c_dim), device=device),
            torch.zeros((n, self.f_p_dim), device=device)
        )
        return x_a

    def _decode_cano_feature(self, f_c_, n, t, device):
        # Decode average canonical features to higher dimension
        f_c = f_c_.view(n, t, -1)
        x_c = self.ae.decoder(
            torch.zeros((n, self.f_a_dim), device=device),
            f_c.mean(1),
            torch.zeros((n, self.f_p_dim), device=device),
            is_feature_map=True
        )
        return x_c

    def _decode_pose_feature(self, f_p_, n, t, device):
        # Decode pose features to images
        x_p_ = self.ae.decoder(
            torch.zeros((n * t, self.f_a_dim), device=device),
            torch.zeros((n * t, self.f_c_dim), device=device),
            f_p_,
            is_feature_map=True
        )
        return x_p_