summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
blob: 0e7d8b36edb5ad5f4c28d692ef7ccdb6514d2959 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

from models.auto_encoder import AutoEncoder
from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet
from utils.triplet_loss import BatchAllTripletLoss


class RGBPartNet(nn.Module):
    def __init__(
            self,
            ae_in_channels: int = 3,
            ae_feature_channels: int = 64,
            f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
            hpm_use_1x1conv: bool = False,
            hpm_scales: tuple[int, ...] = (1, 2, 4),
            hpm_use_avg_pool: bool = True,
            hpm_use_max_pool: bool = True,
            fpfe_feature_channels: int = 32,
            fpfe_kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)),
            fpfe_paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)),
            fpfe_halving: tuple[int, ...] = (0, 2, 3),
            tfa_squeeze_ratio: int = 4,
            tfa_num_parts: int = 16,
            embedding_dims: int = 256,
            triplet_margins: tuple[float, float] = (0.2, 0.2),
            image_log_on: bool = False
    ):
        super().__init__()
        (self.f_a_dim, self.f_c_dim, self.f_p_dim) = f_a_c_p_dims
        self.hpm_num_parts = sum(hpm_scales)
        self.image_log_on = image_log_on

        self.ae = AutoEncoder(
            ae_in_channels, ae_feature_channels, f_a_c_p_dims
        )
        self.pn = PartNet(
            ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,
            fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_parts
        )
        out_channels = self.pn.tfa_in_channels
        self.hpm = HorizontalPyramidMatching(
            ae_feature_channels * 2, out_channels, hpm_use_1x1conv,
            hpm_scales, hpm_use_avg_pool, hpm_use_max_pool
        )
        empty_fc = torch.empty(self.hpm_num_parts + tfa_num_parts,
                               out_channels, embedding_dims)
        self.fc_mat = nn.Parameter(empty_fc)

        (hpm_margin, pn_margin) = triplet_margins
        self.hpm_ba_trip = BatchAllTripletLoss(hpm_margin)
        self.pn_ba_trip = BatchAllTripletLoss(pn_margin)

    def fc(self, x):
        return x @ self.fc_mat

    def forward(self, x_c1, x_c2=None, y=None):
        # Step 0: Swap batch_size and time dimensions for next step
        # n, t, c, h, w
        x_c1 = x_c1.transpose(0, 1)
        if self.training:
            x_c2 = x_c2.transpose(0, 1)

        # Step 1: Disentanglement
        # t, n, c, h, w
        ((x_c_c1, x_p_c1), images, losses) = self._disentangle(x_c1, x_c2)

        # Step 2.a: Static Gait Feature Aggregation & HPM
        # n, c, h, w
        x_c = self.hpm(x_c_c1)
        # p, n, c

        # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
        # t, n, c, h, w
        x_p = self.pn(x_p_c1)
        # p, n, c

        # Step 3: Cat feature map together and fc
        x = torch.cat((x_c, x_p))
        x = self.fc(x)

        if self.training:
            hpm_ba_trip = self.hpm_ba_trip(x[:self.hpm_num_parts], y)
            pn_ba_trip = self.pn_ba_trip(x[self.hpm_num_parts:], y)
            losses = torch.stack((*losses, hpm_ba_trip, pn_ba_trip))
            return losses, images
        else:
            return x.unsqueeze(1).view(-1)

    def _disentangle(self, x_c1, x_c2=None):
        t, n, c, h, w = x_c1.size()
        device = x_c1.device
        if self.training:
            # Encoded appearance, canonical and pose features
            f_a_c1, f_c_c1, f_p_c1 = [], [], []
            # Features required to calculate losses
            f_p_c2 = []
            xrecon_loss, cano_cons_loss = [], []
            for t2 in range(t):
                t1 = random.randrange(t)
                output = self.ae(x_c1[t2], x_c1[t1], x_c2[t2])
                (f_c1_t2, f_p_t2, losses) = output

                (f_a_c1_t2, f_c_c1_t2, f_p_c1_t2) = f_c1_t2
                if self.image_log_on:
                    f_a_c1.append(f_a_c1_t2)
                # Save canonical features and pose features
                f_c_c1.append(f_c_c1_t2)
                f_p_c1.append(f_p_c1_t2)

                # Losses per time step
                # Used in pose similarity loss
                (_, f_p_c2_t2) = f_p_t2
                f_p_c2.append(f_p_c2_t2)

                # Cross reconstruction loss and canonical loss
                (xrecon_loss_t2, cano_cons_loss_t2) = losses
                xrecon_loss.append(xrecon_loss_t2)
                cano_cons_loss.append(cano_cons_loss_t2)
            if self.image_log_on:
                f_a_c1 = torch.stack(f_a_c1)
            f_c_c1_mean = torch.stack(f_c_c1).mean(0)
            f_p_c1 = torch.stack(f_p_c1)
            f_p_c2 = torch.stack(f_p_c2)

            # Decode features
            appearance_image, canonical_image, pose_image = None, None, None
            with torch.no_grad():
                # Decode average canonical features to higher dimension
                x_c_c1 = self.ae.decoder(
                    torch.zeros((n, self.f_a_dim), device=device),
                    f_c_c1_mean,
                    torch.zeros((n, self.f_p_dim), device=device),
                    cano_only=True
                )
                # Decode pose features to images
                f_p_c1_ = f_p_c1.view(t * n, -1)
                x_p_c1_ = self.ae.decoder(
                    torch.zeros((t * n, self.f_a_dim), device=device),
                    torch.zeros((t * n, self.f_c_dim), device=device),
                    f_p_c1_
                )
                x_p_c1 = x_p_c1_.view(t, n, c, h, w)

                if self.image_log_on:
                    # Decode appearance features
                    f_a_c1_ = f_a_c1.view(t * n, -1)
                    appearance_image_ = self.ae.decoder(
                        f_a_c1_,
                        torch.zeros((t * n, self.f_c_dim), device=device),
                        torch.zeros((t * n, self.f_p_dim), device=device)
                    )
                    appearance_image = appearance_image_.view(t, n, c, h, w)
                    # Continue decoding canonical features
                    canonical_image = self.ae.decoder.trans_conv3(x_c_c1)
                    canonical_image = torch.sigmoid(
                        self.ae.decoder.trans_conv4(canonical_image)
                    )
                    pose_image = x_p_c1

            # Losses
            xrecon_loss = torch.sum(torch.stack(xrecon_loss))
            pose_sim_loss = self._pose_sim_loss(f_p_c1, f_p_c2) * 10
            cano_cons_loss = torch.mean(torch.stack(cano_cons_loss))

            return ((x_c_c1, x_p_c1),
                    (appearance_image, canonical_image, pose_image),
                    (xrecon_loss, pose_sim_loss, cano_cons_loss))

        else:  # evaluating
            x_c1_ = x_c1.view(t * n, c, h, w)
            (f_c_c1_, f_p_c1_) = self.ae(x_c1_)

            # Canonical features
            f_c_c1 = f_c_c1_.view(t, n, -1)
            f_c_c1_mean = f_c_c1.mean(0)
            x_c_c1 = self.ae.decoder(
                torch.zeros((n, self.f_a_dim)),
                f_c_c1_mean,
                torch.zeros((n, self.f_p_dim)),
                cano_only=True
            )

            # Pose features
            x_p_c1_ = self.ae.decoder(
                torch.zeros((t * n, self.f_a_dim)),
                torch.zeros((t * n, self.f_c_dim)),
                f_p_c1_
            )
            x_p_c1 = x_p_c1_.view(t, n, c, h, w)

            return (x_c_c1, x_p_c1), None, None

    @staticmethod
    def _pose_sim_loss(f_p_c1: torch.Tensor,
                       f_p_c2: torch.Tensor) -> torch.Tensor:
        f_p_c1_mean = f_p_c1.mean(dim=0)
        f_p_c2_mean = f_p_c2.mean(dim=0)
        return F.mse_loss(f_p_c1_mean, f_p_c2_mean)