summaryrefslogtreecommitdiff
path: root/models/rgb_part_net.py
blob: f39b40b5c0d792629e583ef6d69bdfe28d5fef92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import random

import torch
import torch.nn as nn
import torch.nn.functional as F

from models.auto_encoder import AutoEncoder
from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet
from utils.triplet_loss import BatchAllTripletLoss


class RGBPartNet(nn.Module):
    def __init__(
            self,
            num_class: int = 74,
            ae_in_channels: int = 3,
            ae_feature_channels: int = 64,
            f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
            hpm_scales: tuple[int, ...] = (1, 2, 4),
            hpm_use_avg_pool: bool = True,
            hpm_use_max_pool: bool = True,
            fpfe_feature_channels: int = 32,
            fpfe_kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)),
            fpfe_paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)),
            fpfe_halving: tuple[int, ...] = (0, 2, 3),
            tfa_squeeze_ratio: int = 4,
            tfa_num_parts: int = 16,
            embedding_dims: int = 256,
            triplet_margin: float = 0.2
    ):
        super().__init__()
        self.ae = AutoEncoder(
            num_class, ae_in_channels, ae_feature_channels, f_a_c_p_dims
        )
        self.pn = PartNet(
            ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,
            fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_parts
        )
        out_channels = self.pn.tfa_in_channels
        self.hpm = HorizontalPyramidMatching(
            ae_feature_channels * 8, out_channels, hpm_scales,
            hpm_use_avg_pool, hpm_use_max_pool
        )
        total_parts = sum(hpm_scales) + tfa_num_parts
        empty_fc = torch.empty(total_parts, out_channels, embedding_dims)
        self.fc_mat = nn.Parameter(empty_fc)

        self.ba_triplet_loss = BatchAllTripletLoss(triplet_margin)

    def fc(self, x):
        return x @ self.fc_mat

    def forward(self, x_c1, x_c2=None, y=None):
        # Step 0: Swap batch_size and time dimensions for next step
        # n, t, c, h, w
        x_c1 = x_c1.transpose(0, 1)
        if self.training:
            x_c2 = x_c2.transpose(0, 1)

        # Step 1: Disentanglement
        # t, n, c, h, w
        ((x_c_c1, x_p_c1), losses) = self._disentangle(x_c1, x_c2, y)

        # Step 2.a: HPM & Static Gait Feature Aggregation
        # t, n, c, h, w
        x_c = self.hpm(x_c_c1)
        # p, t, n, c
        x_c = x_c.mean(dim=1)
        # p, n, c

        # Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
        # t, n, c, h, w
        x_p = self.pn(x_p_c1)
        # p, n, c

        # Step 3: Cat feature map together and fc
        x = torch.cat((x_c, x_p))
        x = self.fc(x)

        if self.training:
            batch_all_triplet_loss = self.ba_triplet_loss(x, y)
            losses = (*losses, batch_all_triplet_loss)
            loss = torch.sum(torch.stack(losses))
            return loss, [loss.item() for loss in losses]
        else:
            return x.unsqueeze(1).view(-1)

    def _disentangle(self, x_c1, x_c2=None, y=None):
        num_frames = len(x_c1)
        # Decoded canonical features and Pose images
        x_c_c1, x_p_c1 = [], []
        if self.training:
            # Features required to calculate losses
            f_p_c1, f_p_c2 = [], []
            xrecon_loss, cano_cons_loss = [], []
            for t2 in range(num_frames):
                t1 = random.randrange(num_frames)
                output = self.ae(x_c1[t2], x_c1[t1], x_c2[t2], y)
                (x_c1_t2, f_p_t2, losses) = output

                # Decoded features or image
                (x_c_c1_t2, x_p_c1_t2) = x_c1_t2
                # Canonical Features for HPM
                x_c_c1.append(x_c_c1_t2)
                # Pose image for Part Net
                x_p_c1.append(x_p_c1_t2)

                # Losses per time step
                # Used in pose similarity loss
                (f_p_c1_t2, f_p_c2_t2) = f_p_t2
                f_p_c1.append(f_p_c1_t2)
                f_p_c2.append(f_p_c2_t2)
                # Cross reconstruction loss and canonical loss
                (xrecon_loss_t2, cano_cons_loss_t2) = losses
                xrecon_loss.append(xrecon_loss_t2)
                cano_cons_loss.append(cano_cons_loss_t2)

            x_c_c1 = torch.stack(x_c_c1)
            x_p_c1 = torch.stack(x_p_c1)

            # Losses
            xrecon_loss = torch.sum(torch.stack(xrecon_loss))
            pose_sim_loss = self._pose_sim_loss(f_p_c1, f_p_c2) * 10
            cano_cons_loss = torch.mean(torch.stack(cano_cons_loss))

            return ((x_c_c1, x_p_c1),
                    (xrecon_loss, pose_sim_loss, cano_cons_loss))

        else:  # evaluating
            for t2 in range(num_frames):
                x_c1_t2 = self.ae(x_c1[t2])
                # Decoded features or image
                (x_c_c1_t2, x_p_c1_t2) = x_c1_t2
                # Canonical Features for HPM
                x_c_c1.append(x_c_c1_t2)
                # Pose image for Part Net
                x_p_c1.append(x_p_c1_t2)

            x_c_c1 = torch.stack(x_c_c1)
            x_p_c1 = torch.stack(x_p_c1)

            return (x_c_c1, x_p_c1), None

    @staticmethod
    def _pose_sim_loss(f_p_c1: list[torch.Tensor],
                       f_p_c2: list[torch.Tensor]) -> torch.Tensor:
        f_p_c1_mean = torch.stack(f_p_c1).mean(dim=0)
        f_p_c2_mean = torch.stack(f_p_c2).mean(dim=0)
        return F.mse_loss(f_p_c1_mean, f_p_c2_mean)