1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
import torch
import torch.nn as nn
from models.auto_encoder import AutoEncoder
from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet
class RGBPartNet(nn.Module):
def __init__(
self,
ae_in_channels: int = 3,
ae_in_size: tuple[int, int] = (64, 48),
ae_feature_channels: int = 64,
f_a_c_p_dims: tuple[int, int, int] = (192, 192, 128),
hpm_scales: tuple[int, ...] = (1, 2, 4),
hpm_use_avg_pool: bool = True,
hpm_use_max_pool: bool = True,
tfa_squeeze_ratio: int = 4,
tfa_num_parts: int = 16,
embedding_dims: tuple[int] = (256, 256),
image_log_on: bool = False
):
super().__init__()
self.h, self.w = ae_in_size
self.image_log_on = image_log_on
self.ae = AutoEncoder(
ae_in_channels, ae_in_size, ae_feature_channels, f_a_c_p_dims
)
self.hpm = HorizontalPyramidMatching(
f_a_c_p_dims[1], embedding_dims[0], hpm_scales,
hpm_use_avg_pool, hpm_use_max_pool
)
self.pn = PartNet(
f_a_c_p_dims[2], embedding_dims[1], tfa_num_parts, tfa_squeeze_ratio
)
self.num_parts = self.hpm.num_parts + tfa_num_parts
def forward(self, x_c1, x_c2=None):
# Step 1: Disentanglement
# n, t, c, h, w
(f_a, f_c, f_p), ae_losses = self._disentangle(x_c1, x_c2)
# Step 2.a: Static Gait Feature Aggregation & HPM
# n, c, h, w
f_c_mean = f_c.mean(1)
x_c = self.hpm(f_c_mean)
# p, n, d
# Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
# n, t, c, h, w
x_p = self.pn(f_p)
# p, n, d
if self.training:
i_a, i_c, i_p = None, None, None
if self.image_log_on:
with torch.no_grad():
f_a_mean = f_a.mean(1)
i_a = self.ae.decoder(
f_a_mean,
torch.zeros_like(f_c_mean),
torch.zeros_like(f_p[:, 0])
)
i_c = self.ae.decoder(
torch.zeros_like(f_a_mean),
f_c_mean,
torch.zeros_like(f_p[:, 0])
)
f_p_size = f_p.size()
i_p = self.ae.decoder(
torch.zeros(f_p_size[0] * f_p_size[1], *f_a.shape[2:],
device=f_a.device),
torch.zeros(f_p_size[0] * f_p_size[1], *f_c.shape[2:],
device=f_c.device),
f_p.view(-1, *f_p_size[2:])
).view(x_c1.size())
return x_c, x_p, ae_losses, (i_a, i_c, i_p)
else:
return x_c, x_p
def _disentangle(self, x_c1_t2, x_c2_t2=None):
if self.training:
x_c1_t1 = x_c1_t2[:, torch.randperm(x_c1_t2.size(1)), :, :, :]
features, losses = self.ae(x_c1_t2, x_c1_t1, x_c2_t2)
return features, losses
else: # evaluating
features = self.ae(x_c1_t2)
return features, None
|