1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
import random
import torch
import torch.nn as nn
from models import AutoEncoder, HorizontalPyramidMatching, PartNet
class RGBPartNet(nn.Module):
def __init__(
self,
num_class: int = 74,
ae_in_channels: int = 3,
ae_feature_channels: int = 64,
f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
hpm_scales: tuple[int, ...] = (1, 2, 4, 8),
hpm_use_avg_pool: bool = True,
hpm_use_max_pool: bool = True,
fpfe_feature_channels: int = 32,
fpfe_kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)),
fpfe_paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)),
fpfe_halving: tuple[int, ...] = (0, 2, 3),
tfa_squeeze_ratio: int = 4,
tfa_num_part: int = 16,
):
super().__init__()
self.ae = AutoEncoder(
num_class, ae_in_channels, ae_feature_channels, f_a_c_p_dims
)
self.pn = PartNet(
ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,
fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_part
)
self.hpm = HorizontalPyramidMatching(
ae_in_channels, self.pn.tfa_in_channels, hpm_scales,
hpm_use_avg_pool, hpm_use_max_pool
)
self.mse_loss = nn.MSELoss()
# TODO Weight inti here
def pose_sim_loss(self, f_p_c1: torch.Tensor,
f_p_c2: torch.Tensor) -> torch.Tensor:
f_p_c1_mean = f_p_c1.mean(dim=0)
f_p_c2_mean = f_p_c2.mean(dim=0)
return self.mse_loss(f_p_c1_mean, f_p_c2_mean).item()
def forward(self, x_c1, x_c2, y):
# Step 0: Swap batch_size and time dimensions for next step
# n, t, c, h, w
x_c1, x_c2 = x_c1.transpose(0, 1), x_c2.transpose(0, 1)
# Step 1: Disentanglement
# t, n, c, h, w
num_frames = len(x_c1)
f_c_c1, f_p_c1, f_p_c2 = [], [], []
xrecon_loss, cano_cons_loss = 0, 0
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
output = self.ae(x_c1[t1], x_c1[t2], x_c2[t2], y)
(feature_t2, xrecon_loss_t2, cano_cons_loss_t2) = output
(f_c_c1_t2, f_p_c1_t2, f_p_c2_t2) = feature_t2
# Features for next step
f_c_c1.append(f_c_c1_t2)
f_p_c1.append(f_p_c1_t2)
# Losses per time step
f_p_c2.append(f_p_c2_t2)
xrecon_loss += xrecon_loss_t2
cano_cons_loss += cano_cons_loss_t2
f_c_c1 = torch.stack(f_c_c1)
f_p_c1 = torch.stack(f_p_c1)
# Step 2.a: HPM & Static Gait Feature Aggregation
# t, n, c, h, w
x_c = self.hpm(f_c_c1)
# p, t, n, c
x_c = x_c.mean(dim=1)
# p, n, c
# Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
# t, n, c, h, w
x_p = self.pn(f_p_c1)
# p, n, c
# Step 3: Cat feature map together and calculate losses
x = torch.cat(x_c, x_p)
# Losses
xrecon_loss /= num_frames
f_p_c2 = torch.stack(f_p_c2)
pose_sim_loss = self.pose_sim_loss(f_p_c1, f_p_c2)
cano_cons_loss /= num_frames
# TODO Implement Batch All triplet loss function
batch_all_triplet_loss = 0
loss = (xrecon_loss + pose_sim_loss + cano_cons_loss
+ batch_all_triplet_loss)
return x, loss
|