blob: 0a177d1ffd0b39f965d23f921fe004d2938283c6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import random
from collections.abc import Iterator
import numpy as np
from torch.utils import data
from utils.dataset import CASIAB
class TripletSampler(data.Sampler):
def __init__(
self,
data_source: CASIAB,
batch_size: tuple[int, int]
):
super().__init__(data_source)
self.metadata_labels = data_source.metadata['labels']
self.labels = data_source.labels
self.length = len(self.labels)
self.indexes = np.arange(0, self.length)
(self.pr, self.k) = batch_size
def __iter__(self) -> Iterator[int]:
while True:
sampled_indexes = []
# Sample pr subjects by sampling labels appeared in dataset
sampled_subjects = random.sample(self.metadata_labels, k=self.pr)
for label in sampled_subjects:
clips_from_subject = self.indexes[self.labels == label].tolist()
# Sample k clips from the subject without replacement if
# have enough clips, k more clips will sampled for
# disentanglement
k = self.k * 2
if len(clips_from_subject) >= k:
_sampled_indexes = random.sample(clips_from_subject, k=k)
else:
_sampled_indexes = random.choices(clips_from_subject, k=k)
sampled_indexes += _sampled_indexes
yield sampled_indexes
def __len__(self) -> int:
return self.length
|