1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class BatchAllTripletLoss(nn.Module):
def __init__(self, margin: float = 0.2):
super().__init__()
self.margin = margin
def forward(self, x, y):
p, n, c = x.size()
dist = self._batch_distance(x)
positive_negative_dist = self._hard_distance(dist, y, p, n)
all_loss = F.relu(self.margin + positive_negative_dist).view(p, -1)
parted_loss_mean = self._none_zero_parted_mean(all_loss)
return parted_loss_mean
@staticmethod
def _hard_distance(dist, y, p, n):
hard_positive_mask = y.unsqueeze(1) == y.unsqueeze(2)
hard_negative_mask = y.unsqueeze(1) != y.unsqueeze(2)
all_hard_positive = dist[hard_positive_mask].view(p, n, -1, 1)
all_hard_negative = dist[hard_negative_mask].view(p, n, 1, -1)
positive_negative_dist = all_hard_positive - all_hard_negative
return positive_negative_dist
@staticmethod
def _batch_distance(x):
# Euclidean distance p x n x n
x_squared_sum = torch.sum(x ** 2, dim=2)
x1_squared_sum = x_squared_sum.unsqueeze(2)
x2_squared_sum = x_squared_sum.unsqueeze(1)
x1_times_x2_sum = x @ x.transpose(1, 2)
dist = torch.sqrt(
F.relu(x1_squared_sum - 2 * x1_times_x2_sum + x2_squared_sum)
)
return dist
@staticmethod
def _none_zero_parted_mean(all_loss):
# Non-zero parted mean
non_zero_counts = (all_loss != 0).sum(1)
parted_loss_mean = all_loss.sum(1) / non_zero_counts
parted_loss_mean[non_zero_counts == 0] = 0
return parted_loss_mean
class JointBatchAllTripletLoss(BatchAllTripletLoss):
def __init__(
self,
hpm_num_parts: int,
margins: tuple[float, float] = (0.2, 0.2)
):
super().__init__()
self.hpm_num_parts = hpm_num_parts
self.margin_hpm, self.margin_pn = margins
def forward(self, x, y):
p, n, c = x.size()
dist = self._batch_distance(x)
positive_negative_dist = self._hard_distance(dist, y, p, n)
hpm_part_loss = F.relu(
self.margin_hpm + positive_negative_dist[:self.hpm_num_parts]
).view(self.hpm_num_parts, -1)
pn_part_loss = F.relu(
self.margin_pn + positive_negative_dist[self.hpm_num_parts:]
).view(p - self.hpm_num_parts, -1)
all_loss = torch.cat((hpm_part_loss, pn_part_loss)).view(p, -1)
parted_loss_mean = self._none_zero_parted_mean(all_loss)
return parted_loss_mean
|