aboutsummaryrefslogtreecommitdiff
path: root/supervised/scheduler.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2022-03-15 17:29:40 +0800
committerJordan Gong <jordan.gong@protonmail.com>2022-03-15 17:29:40 +0800
commitd7751c46315a6126950a283d8a32a8d14686ded2 (patch)
tree05f2d96e0a34b09d7d1fe45735d96c9d075e600e /supervised/scheduler.py
Add supervised baseline on CIFAR10
Diffstat (limited to 'supervised/scheduler.py')
-rw-r--r--supervised/scheduler.py29
1 files changed, 29 insertions, 0 deletions
diff --git a/supervised/scheduler.py b/supervised/scheduler.py
new file mode 100644
index 0000000..828e547
--- /dev/null
+++ b/supervised/scheduler.py
@@ -0,0 +1,29 @@
+import warnings
+
+import numpy as np
+import torch
+
+
+class LinearWarmupAndCosineAnneal(torch.optim.lr_scheduler._LRScheduler):
+ def __init__(self, optimizer, warm_up, T_max, last_epoch=-1):
+ self.warm_up = int(warm_up * T_max)
+ self.T_max = T_max - self.warm_up
+ super().__init__(optimizer, last_epoch=last_epoch)
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn("To get the last learning rate computed by the scheduler, "
+ "please use `get_last_lr()`.")
+
+ if self.last_epoch == 0:
+ return [lr / (self.warm_up + 1) for lr in self.base_lrs]
+ elif self.last_epoch <= self.warm_up:
+ c = (self.last_epoch + 1) / self.last_epoch
+ return [group['lr'] * c for group in self.optimizer.param_groups]
+ else:
+ # ref: https://github.com/pytorch/pytorch/blob/2de4f245c6b1e1c294a8b2a9d7f916d43380af4b/torch/optim/lr_scheduler.py#L493
+ le = self.last_epoch - self.warm_up
+ return [(1 + np.cos(np.pi * le / self.T_max)) /
+ (1 + np.cos(np.pi * (le - 1) / self.T_max)) *
+ group['lr']
+ for group in self.optimizer.param_groups]