aboutsummaryrefslogtreecommitdiff
path: root/supervised/datautils.py
diff options
context:
space:
mode:
Diffstat (limited to 'supervised/datautils.py')
-rw-r--r--supervised/datautils.py67
1 files changed, 0 insertions, 67 deletions
diff --git a/supervised/datautils.py b/supervised/datautils.py
deleted file mode 100644
index 843f669..0000000
--- a/supervised/datautils.py
+++ /dev/null
@@ -1,67 +0,0 @@
-import numpy as np
-import torch
-from torchvision.transforms import transforms
-
-
-def color_distortion(s=1.0):
- # s is the strength of color distortion.
- color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
- rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
- rnd_gray = transforms.RandomGrayscale(p=0.2)
- color_distort = transforms.Compose([
- rnd_color_jitter,
- rnd_gray
- ])
- return color_distort
-
-
-class Clip(object):
- def __call__(self, x):
- return torch.clamp(x, 0, 1)
-
-
-class RandomGaussianBlur(object):
- """
- PyTorch version of
- https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311
- """
-
- def gaussian_blur(self, image, sigma):
- image = image.reshape(1, 3, 224, 224)
- radius = np.int(self.kernel_size / 2)
- kernel_size = radius * 2 + 1
- x = np.arange(-radius, radius + 1)
-
- blur_filter = np.exp(
- -np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0)))
- blur_filter /= np.sum(blur_filter)
-
- conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3,
- padding=[kernel_size // 2, 0], bias=False)
- conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile(
- blur_filter.reshape(kernel_size, 1, 1, 1), 3
- ).transpose([3, 2, 0, 1])))
-
- conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3,
- padding=[0, kernel_size // 2], bias=False)
- conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile(
- blur_filter.reshape(kernel_size, 1, 1, 1), 3
- ).transpose([3, 2, 1, 0])))
-
- res = conv2(conv1(image))
- assert res.shape == image.shape
- return res[0]
-
- def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5):
- self.kernel_size = kernel_size
- self.sigma_range = sigma_range
- self.p = p
-
- def __call__(self, img):
- with torch.no_grad():
- assert isinstance(img, torch.Tensor)
- if np.random.uniform() < self.p:
- return self.gaussian_blur(
- img, sigma=np.random.uniform(*self.sigma_range)
- )
- return img