aboutsummaryrefslogtreecommitdiff
path: root/libs/datautils.py
blob: 843f6694b726615d6635566f368bfabf2a9a7069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import torch
from torchvision.transforms import transforms


def color_distortion(s=1.0):
    # s is the strength of color distortion.
    color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
    rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
    rnd_gray = transforms.RandomGrayscale(p=0.2)
    color_distort = transforms.Compose([
        rnd_color_jitter,
        rnd_gray
    ])
    return color_distort


class Clip(object):
    def __call__(self, x):
        return torch.clamp(x, 0, 1)


class RandomGaussianBlur(object):
    """
        PyTorch version of
        https://github.com/google-research/simclr/blob/244e7128004c5fd3c7805cf3135c79baa6c3bb96/data_util.py#L311
    """

    def gaussian_blur(self, image, sigma):
        image = image.reshape(1, 3, 224, 224)
        radius = np.int(self.kernel_size / 2)
        kernel_size = radius * 2 + 1
        x = np.arange(-radius, radius + 1)

        blur_filter = np.exp(
            -np.power(x, 2.0) / (2.0 * np.power(np.float(sigma), 2.0)))
        blur_filter /= np.sum(blur_filter)

        conv1 = torch.nn.Conv2d(3, 3, kernel_size=(kernel_size, 1), groups=3,
                                padding=[kernel_size // 2, 0], bias=False)
        conv1.weight = torch.nn.Parameter(torch.Tensor(np.tile(
            blur_filter.reshape(kernel_size, 1, 1, 1), 3
        ).transpose([3, 2, 0, 1])))

        conv2 = torch.nn.Conv2d(3, 3, kernel_size=(1, kernel_size), groups=3,
                                padding=[0, kernel_size // 2], bias=False)
        conv2.weight = torch.nn.Parameter(torch.Tensor(np.tile(
            blur_filter.reshape(kernel_size, 1, 1, 1), 3
        ).transpose([3, 2, 1, 0])))

        res = conv2(conv1(image))
        assert res.shape == image.shape
        return res[0]

    def __init__(self, kernel_size, sigma_range=(0.1, 2), p=0.5):
        self.kernel_size = kernel_size
        self.sigma_range = sigma_range
        self.p = p

    def __call__(self, img):
        with torch.no_grad():
            assert isinstance(img, torch.Tensor)
            if np.random.uniform() < self.p:
                return self.gaussian_blur(
                    img, sigma=np.random.uniform(*self.sigma_range)
                )
            return img