1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import torch
from torch import nn, Tensor
from torchvision.models import ResNet
from torchvision.models.resnet import BasicBlock
class CIFARSimCLRResNet50(ResNet):
def __init__(self, out_dim):
super(CIFARSimCLRResNet50, self).__init__(
block=BasicBlock, layers=[3, 4, 6, 3], num_classes=out_dim
)
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
def forward(self, x: Tensor) -> Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
class ImageNetSimCLRResNet50(ResNet):
def __init__(self, out_dim):
super(ImageNetSimCLRResNet50, self).__init__(
block=BasicBlock, layers=[3, 4, 6, 3], num_classes=out_dim
)
|