1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
import argparse
import os
import random
import torch
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import CIFAR10, ImageNet
from torchvision.transforms import transforms, InterpolationMode
from datautils import color_distortion, Clip, RandomGaussianBlur
from models import CIFARResNet50, ImageNetResNet50
from optimizers import LARS
from schedulers import LinearWarmupAndCosineAnneal, LinearLR
from utils import training_log
def build_parser():
def range_parser(range_string: str):
try:
range_ = tuple(map(float, range_string.split('-')))
return range_
except:
raise argparse.ArgumentTypeError("Range must be 'start-end.'")
parser = argparse.ArgumentParser(description='Supervised baseline')
parser.add_argument('--codename', default='cifar10-resnet50-256-lars-warmup',
type=str, help="Model descriptor (default: "
"'cifar10-resnet50-256-lars-warmup')")
parser.add_argument('--seed', default=0, type=int,
help='Random seed for reproducibility (default: 0)')
data_group = parser.add_argument_group('Dataset parameters')
data_group.add_argument('--dataset_dir', default='dataset', type=str,
help="Path to dataset directory (default: 'dataset')")
data_group.add_argument('--dataset', default='cifar10', type=str,
help="Name of dataset (default: 'cifar10')")
data_group.add_argument('--crop_size', default=32, type=int,
help='Random crop size after resize (default: 32)')
data_group.add_argument('--crop_scale', default='0.8-1', type=range_parser,
help='Random resize scale range (default: 0.8-1)')
data_group.add_argument('--hflip_p', default=0.5, type=float,
help='Random horizontal flip probability (default: 0.5)')
data_group.add_argument('--distort_s', default=0.5, type=float,
help='Distortion strength (default: 0.5)')
data_group.add_argument('--gaussian_ker_scale', default=10, type=float,
help='Gaussian kernel scale factor '
'(equals to img_size / kernel_size) (default: 10)')
data_group.add_argument('--gaussian_sigma', default='0.1-2', type=range_parser,
help='Random gaussian blur sigma range (default: 0.1-2)')
data_group.add_argument('--gaussian_p', default=0.5, type=float,
help='Random gaussian blur probability (default: 0.5)')
train_group = parser.add_argument_group('Training parameters')
train_group.add_argument('--batch_size', default=256, type=int,
help='Batch size (default: 256)')
train_group.add_argument('--restore_epoch', default=0, type=int,
help='Restore epoch, 0 for training from scratch '
'(default: 0)')
train_group.add_argument('--n_epochs', default=1000, type=int,
help='Number of epochs (default: 1000)')
train_group.add_argument('--warmup_epochs', default=10, type=int,
help='Epochs for warmup '
'(only for `warmup-anneal` scheduler) (default: 10)')
train_group.add_argument('--n_workers', default=2, type=int,
help='Number of dataloader processes (default: 2)')
train_group.add_argument('--optim', default='lars', type=str,
help="Name of optimizer (default: 'lars')")
train_group.add_argument('--sched', default='warmup-anneal', type=str,
help="Name of scheduler (default: 'warmup-anneal')")
train_group.add_argument('--lr', default=1, type=float,
help='Learning rate (default: 1)')
train_group.add_argument('--momentum', default=0.9, type=float,
help='Momentum (default: 0.9')
train_group.add_argument('--weight_decay', default=1e-6, type=float,
help='Weight decay (l2 regularization) (default: 1e-6)')
args = parser.parse_args()
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.checkpoint_root = os.path.join('checkpoints', args.codename)
args.tensorboard_root = os.path.join('runs', args.codename)
return args
def prepare_dataset(args):
if args.dataset == 'cifar10' or args.dataset == 'cifar':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(
args.crop_size,
scale=args.crop_scale,
interpolation=InterpolationMode.BICUBIC
),
transforms.RandomHorizontalFlip(args.hflip_p),
color_distortion(args.distort_s),
transforms.ToTensor(),
Clip()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
train_set = CIFAR10(args.dataset_dir, train=True, transform=train_transform,
download=True)
test_set = CIFAR10(args.dataset_dir, train=False, transform=test_transform)
elif args.dataset == 'imagenet1k' or args.dataset == 'imagenet1k':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(
args.crop_size,
scale=args.crop_scale,
interpolation=InterpolationMode.BICUBIC
),
transforms.RandomHorizontalFlip(args.hflip_p),
color_distortion(args.distort_s),
transforms.ToTensor(),
RandomGaussianBlur(
kernel_size=args.crop_size // args.gaussian_ker_scale,
sigma_range=args.gaussian_sigma,
p=args.gaussian_p
),
Clip()
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
])
train_set = ImageNet(args.dataset_dir, 'train', transform=train_transform)
test_set = ImageNet(args.dataset_dir, 'val', transform=test_transform)
else:
raise NotImplementedError(f"Dataset '{args.dataset}' is not implemented.")
return train_set, test_set
def create_dataloader(args, train_set, test_set):
train_loader = DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, num_workers=args.n_workers)
test_loader = DataLoader(test_set, batch_size=args.batch_size,
shuffle=False, num_workers=args.n_workers)
args.num_train_batches = len(train_loader)
args.num_test_batches = len(test_loader)
return train_loader, test_loader
def init_model(args):
if args.dataset == 'cifar10' or args.dataset == 'cifar':
model = CIFARResNet50()
elif args.dataset == 'imagenet1k' or args.dataset == 'imagenet1k':
model = ImageNetResNet50()
else:
raise NotImplementedError(f"Dataset '{args.dataset}' is not implemented.")
return model
def configure_optimizer(args, model):
def exclude_from_wd_and_adaptation(name):
if 'bn' in name:
return True
if args.optim == 'lars' and 'bias' in name:
return True
param_groups = [
{
'params': [p for name, p in model.named_parameters()
if not exclude_from_wd_and_adaptation(name)],
'weight_decay': args.weight_decay,
'layer_adaptation': True,
},
{
'params': [p for name, p in model.named_parameters()
if exclude_from_wd_and_adaptation(name)],
'weight_decay': 0.,
'layer_adaptation': False,
},
]
if args.optim == 'adam':
optimizer = torch.optim.Adam(
param_groups,
lr=args.lr,
betas=(args.momentum, 0.999)
)
elif args.optim == 'sdg' or args.optim == 'lars':
optimizer = torch.optim.SGD(
param_groups,
lr=args.lr,
momentum=args.momentum
)
else:
raise NotImplementedError(f"Optimizer '{args.optim}' is not implemented.")
return optimizer
@training_log
def load_checkpoint(args, model, optimizer):
checkpoint_path = os.path.join(args.checkpoint_root, f'{args.restore_epoch:04d}.pt')
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint.pop('model_state_dict'))
optimizer.load_state_dict(checkpoint.pop('optimizer_state_dict'))
return checkpoint
def configure_scheduler(args, optimizer):
n_iters = args.n_epochs * args.num_train_batches
last_iter = args.restore_epoch * args.num_train_batches - 1
if args.sched == 'warmup-anneal':
scheduler = LinearWarmupAndCosineAnneal(
optimizer,
warm_up=args.warmup_epochs / args.n_epochs,
T_max=n_iters,
last_epoch=last_iter
)
elif args.sched == 'linear':
scheduler = LinearLR(
optimizer,
num_epochs=n_iters,
last_epoch=last_iter
)
elif args.sched is None or args.sched == '' or args.sched == 'const':
scheduler = None
else:
raise NotImplementedError(f"Scheduler '{args.sched}' is not implemented.")
return scheduler
def wrap_lars(args, optimizer):
if args.optim == 'lars':
return LARS(optimizer)
else:
return optimizer
def train(args, train_loader, model, loss_fn, optimizer):
model.train()
for batch, (images, targets) in enumerate(train_loader):
images, targets = images.to(args.device), targets.to(args.device)
model.zero_grad()
output = model(images)
loss = loss_fn(output, targets)
loss.backward()
optimizer.step()
yield batch, loss.item()
def eval(args, test_loader, model, loss_fn):
model.eval()
with torch.no_grad():
for batch, (images, targets) in enumerate(test_loader):
images, targets = images.to(args.device), targets.to(args.device)
output = model(images)
loss = loss_fn(output, targets)
prediction = output.argmax(1)
accuracy = (prediction == targets).float().mean()
yield batch, loss.item(), accuracy.item()
@training_log
def batch_logger(args, writer, batch, epoch, loss, lr):
global_batch = epoch * args.num_train_batches + batch
writer.add_scalar('Batch loss/train', loss, global_batch + 1)
writer.add_scalar('Batch lr/train', lr, global_batch + 1)
return {
'batch': batch + 1,
'n_batches': args.num_train_batches,
'global_batch': global_batch + 1,
'epoch': epoch + 1,
'n_epochs': args.n_epochs,
'train_loss': loss,
'lr': lr,
}
@training_log
def epoch_logger(args, writer, epoch, train_loss, test_loss, test_accuracy):
train_loss_mean = train_loss.mean().item()
test_loss_mean = test_loss.mean().item()
test_accuracy_mean = test_accuracy.mean().item()
writer.add_scalar('Epoch loss/train', train_loss_mean, epoch + 1)
writer.add_scalar('Epoch loss/test', test_loss_mean, epoch + 1)
writer.add_scalar('Accuracy/test', test_accuracy_mean, epoch + 1)
return {
'epoch': epoch + 1,
'n_epochs': args.n_epochs,
'train_loss': train_loss_mean,
'test_loss': test_loss_mean,
'test_accuracy': test_accuracy_mean
}
def save_checkpoint(args, epoch_log, model, optimizer):
if not os.path.exists(args.checkpoint_root):
os.makedirs(args.checkpoint_root)
torch.save(epoch_log | {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(args.checkpoint_root, f"{epoch_log['epoch']:04d}.pt"))
if __name__ == '__main__':
args = build_parser()
random.seed(args.seed)
torch.manual_seed(args.seed)
train_set, test_set = prepare_dataset(args)
train_loader, test_loader = create_dataloader(args, train_set, test_set)
resnet = init_model(args).to(args.device)
xent = CrossEntropyLoss()
optimizer = configure_optimizer(args, resnet)
if args.restore_epoch > 0:
load_checkpoint(args, resnet, optimizer)
scheduler = configure_scheduler(args, optimizer)
optimizer = wrap_lars(args, optimizer)
writer = SummaryWriter(args.tensorboard_root)
for epoch in range(args.restore_epoch, args.n_epochs):
train_loss = torch.zeros(args.num_train_batches, device=args.device)
test_loss = torch.zeros(args.num_test_batches, device=args.device)
test_accuracy = torch.zeros(args.num_test_batches, device=args.device)
for batch, loss in train(args, train_loader, resnet, xent, optimizer):
train_loss[batch] = loss
batch_logger(args, writer, batch, epoch, loss, optimizer.param_groups[0]['lr'])
if scheduler and batch != args.num_train_batches - 1:
scheduler.step()
for batch, loss, accuracy in eval(args, test_loader, resnet, xent):
test_loss[batch] = loss
test_accuracy[batch] = accuracy
epoch_log = epoch_logger(args, writer, epoch, train_loss, test_loss, test_accuracy)
save_checkpoint(args, epoch_log, resnet, optimizer)
# Step after save checkpoint, otherwise the schedular
# will one iter ahead after restore
if scheduler:
scheduler.step()
|