aboutsummaryrefslogtreecommitdiff
path: root/supervised/baseline.py
blob: 047d8ca627aa4426beb8ab34f520eee7a9177a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import random

import torch
from torch import nn, Tensor, optim
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import CIFAR10
from torchvision.models import ResNet
from torchvision.models.resnet import BasicBlock
from torchvision.transforms import transforms, InterpolationMode
from tqdm import tqdm

from supervised.lars_optimizer import LARS
from supervised.scheduler import LinearWarmupAndCosineAnneal

CODENAME = 'cifar10-resnet50-aug-lars-sched'
DATASET_ROOT = '../dataset'
TENSORBOARD_PATH = os.path.join('../runs', CODENAME)
CHECKPOINT_PATH = os.path.join('../checkpoints', CODENAME)

BATCH_SIZE = 256
N_EPOCHS = 1000
WARMUP_EPOCHS = 10
N_WORKERS = 2
LR = 1
MOMENTUM = 0.9
WEIGHT_DECAY = 1e-6
SEED = 0

if not os.path.exists(CHECKPOINT_PATH):
    os.makedirs(CHECKPOINT_PATH)

random.seed(SEED)
torch.manual_seed(SEED)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


class CIFAR10ResNet50(ResNet):
    def __init__(self):
        super(CIFAR10ResNet50, self).__init__(
            block=BasicBlock, layers=[3, 4, 6, 3], num_classes=10
        )
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x


def get_color_distortion(s=1.0):
    # s is the strength of color distortion.
    color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
    rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8)
    rnd_gray = transforms.RandomGrayscale(p=0.2)
    color_distort = transforms.Compose([
        rnd_color_jitter,
        rnd_gray
    ])
    return color_distort


transform = transforms.Compose([
    transforms.RandomResizedCrop(32, interpolation=InterpolationMode.BICUBIC),
    transforms.RandomHorizontalFlip(0.5),
    get_color_distortion(0.5),
    transforms.ToTensor()
])

train_set = CIFAR10(DATASET_ROOT, train=True, transform=transform, download=True)
test_set = CIFAR10(DATASET_ROOT, train=False, transform=transform, download=True)

train_loader = DataLoader(train_set, batch_size=BATCH_SIZE,
                          shuffle=True, num_workers=N_WORKERS)
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE,
                         shuffle=False, num_workers=N_WORKERS)

num_train_batches = len(train_loader)
num_test_batches = len(test_loader)

resnet = CIFAR10ResNet50().to(device)
criterion = CrossEntropyLoss()


def exclude_from_wd_and_adaptation(name):
    if 'bn' in name or 'bias' in name:
        return True


param_groups = [
    {
        'params': [p for name, p in resnet.named_parameters()
                   if not exclude_from_wd_and_adaptation(name)],
        'weight_decay': WEIGHT_DECAY,
        'layer_adaptation': True,
    },
    {
        'params': [p for name, p in resnet.named_parameters()
                   if exclude_from_wd_and_adaptation(name)],
        'weight_decay': 0.,
        'layer_adaptation': False,
    },
]
optimizer = torch.optim.SGD(param_groups, lr=LR, momentum=MOMENTUM)
scheduler = LinearWarmupAndCosineAnneal(
    optimizer,
    WARMUP_EPOCHS / N_EPOCHS,
    N_EPOCHS * num_train_batches,
    last_epoch=-1,
)
optimizer = LARS(optimizer)

writer = SummaryWriter(TENSORBOARD_PATH)

train_iters = 0
test_iters = 0
for epoch in range(N_EPOCHS):
    train_loss = 0
    training_progress = tqdm(
        enumerate(train_loader), desc='Train loss: ', total=num_train_batches
    )

    resnet.train()
    for batch, (images, targets) in training_progress:
        images, targets = images.to(device), targets.to(device)

        resnet.zero_grad()
        output = resnet(images)
        loss = criterion(output, targets)
        loss.backward()
        optimizer.step()
        scheduler.step()

        train_loss += loss.item()
        train_loss_mean = train_loss / (batch + 1)
        training_progress.set_description(f'Train loss: {train_loss_mean:.4f}')
        writer.add_scalar('Loss/train', loss, train_iters + 1)
        train_iters += 1

    test_loss = 0
    test_acc = 0
    test_progress = tqdm(
        enumerate(test_loader), desc='Test loss: ', total=num_test_batches
    )

    resnet.eval()
    with torch.no_grad():
        for batch, (images, targets) in test_progress:
            images, targets = images.to(device), targets.to(device)

            output = resnet(images)
            loss = criterion(output, targets)
            _, prediction = output.max(-1)

            test_loss += loss
            test_loss_mean = test_loss / (batch + 1)
            test_progress.set_description(f'Test loss: {test_loss_mean:.4f}')
            test_acc += (prediction == targets).float().mean()
            test_acc_mean = test_acc / (batch + 1)
            writer.add_scalar('Loss/test', loss, test_iters + 1)
            test_iters += 1

    train_loss_mean = train_loss / num_train_batches
    test_loss_mean = test_loss / num_test_batches
    test_acc_mean = test_acc / num_test_batches
    print(f'[{epoch + 1}/{N_EPOCHS}]\t'
          f'Train loss: {train_loss_mean:.4f}\t'
          f'Test loss: {test_loss_mean:.4f}\t',
          f'Test acc: {test_acc_mean:.4f}')

    writer.add_scalar('Acc', test_acc_mean, epoch + 1)

    torch.save({'epoch': epoch,
                'resnet_state_dict': resnet.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'train_loss': train_loss_mean, 'test_loss': test_loss_mean,
                }, os.path.join(CHECKPOINT_PATH, f'{epoch + 1:04d}.pt'))