summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2020-12-30 11:14:26 +0800
committerJordan Gong <jordan.gong@protonmail.com>2020-12-30 11:14:26 +0800
commit0178b7722c63820d701b0442b5946d9a042074d7 (patch)
treeb41bb798c1ecd107bf273c611afcb0f1103197e2
parent6cf6f7fb0e43b437c80f134c3eb1a1c5afffdba9 (diff)
Add pooling options in HPM
According to [1], we can use GAP and GMP together, or one of both in ablation study. [1]Y. Fu et al., “Horizontal pyramid matching for person re-identification,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, pp. 8295–8302.
-rw-r--r--models/hpm.py5
-rw-r--r--models/layers.py19
2 files changed, 17 insertions, 7 deletions
diff --git a/models/hpm.py b/models/hpm.py
index 1773f56..85a4e58 100644
--- a/models/hpm.py
+++ b/models/hpm.py
@@ -10,13 +10,15 @@ class HorizontalPyramidMatching(nn.Module):
self,
scales: tuple[int, ...] = (1, 2, 4, 8),
out_channels: int = 256,
- use_avg_pool: bool = False,
+ use_avg_pool: bool = True,
+ use_max_pool: bool = True,
**kwargs
):
super().__init__()
self.scales = scales
self.out_channels = out_channels
self.use_avg_pool = use_avg_pool
+ self.use_max_pool = use_max_pool
self.backbone = resnet50(pretrained=True)
self.in_channels = self.backbone.layer4[-1].conv1.in_channels
@@ -29,6 +31,7 @@ class HorizontalPyramidMatching(nn.Module):
pyramid = [HorizontalPyramidPooling(self.in_channels,
self.out_channels,
use_avg_pool=self.use_avg_pool,
+ use_max_pool=self.use_max_pool,
**kwargs)
for _ in range(scale)]
return pyramid
diff --git a/models/layers.py b/models/layers.py
index f824078..62a3cc6 100644
--- a/models/layers.py
+++ b/models/layers.py
@@ -141,16 +141,23 @@ class HorizontalPyramidPooling(BasicConv2d):
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple[int, int]] = 1,
- use_avg_pool: bool = False,
+ use_avg_pool: bool = True,
+ use_max_pool: bool = True,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
- if use_avg_pool:
- self.pool = nn.AdaptiveAvgPool2d(1)
- else:
- self.pool = nn.AdaptiveMaxPool2d(1)
+ self.use_avg_pool = use_avg_pool
+ self.use_max_pool = use_max_pool
+ assert use_avg_pool or use_max_pool, 'Pooling layer(s) required.'
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
+ self.max_pool = nn.AdaptiveMaxPool2d(1)
def forward(self, x):
- x = self.pool(x)
+ if self.use_avg_pool and self.use_max_pool:
+ x = self.avg_pool(x) + self.max_pool(x)
+ elif self.use_avg_pool and not self.use_max_pool:
+ x = self.avg_pool(x)
+ elif not self.use_avg_pool and self.use_max_pool:
+ x = self.max_pool(x)
x = super().forward(x)
return x