diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2020-12-22 21:00:03 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2020-12-22 21:00:03 +0800 |
commit | b8b31bdc9b37ebe885775c9e49caa00b28e8a084 (patch) | |
tree | f89ce9a1d818db5de10d5bad445c99954e7c99e2 | |
parent | 5685ab1a29a43ac97f840a550d8b738131d70a1f (diff) |
Implement prototype layers
-rw-r--r-- | modules/layers.py | 220 |
1 files changed, 220 insertions, 0 deletions
diff --git a/modules/layers.py b/modules/layers.py new file mode 100644 index 0000000..a0116e2 --- /dev/null +++ b/modules/layers.py @@ -0,0 +1,220 @@ +import copy +from typing import Union, Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Encoder(nn.Module): + def __init__(self, in_channels: int, opt): + super(Encoder, self).__init__() + self.opt = opt + self.em_dim = opt.em_dim + nf = 64 + + # Cx[HxW] + # Conv1 3x64x32 -> 64x64x32 + self.conv1 = nn.Conv2d(in_channels, nf, kernel_size=3, padding=1) + self.batch_norm1 = nn.BatchNorm2d(nf) + # MaxPool1 64x64x32 -> 64x32x16 + self.max_pool1 = nn.AdaptiveMaxPool2d((32, 16)) + # Conv2 64x32x16 -> 256x32x16 + self.conv2 = nn.Conv2d(nf, nf * 4, kernel_size=3, padding=1) + self.batch_norm2 = nn.BatchNorm2d(nf * 4) + # MaxPool2 256x32x16 -> 256x16x8 + self.max_pool2 = nn.AdaptiveMaxPool2d((16, 8)) + # Conv3 256x16x8 -> 512x16x8 + self.conv3 = nn.Conv2d(nf * 4, nf * 8, kernel_size=3, padding=1) + self.batch_norm3 = nn.BatchNorm2d(nf * 8) + # Conv4 512x16x8 -> 512x16x8 (for large dataset) + self.conv4 = nn.Conv2d(nf * 8, nf * 8, kernel_size=3, padding=1) + self.batch_norm4 = nn.BatchNorm2d(nf * 8) + # MaxPool3 512x16x8 -> 512x4x2 + self.max_pool3 = nn.AdaptiveMaxPool2d((4, 2)) + # FC 512*4*2 -> 320 + self.fc = nn.Linear(nf * 8 * 2 * 4, self.em_dim) + self.batch_norm_fc = nn.BatchNorm1d(self.em_dim) + + def forward(self, x): + x = F.leaky_relu(self.batch_norm1(self.conv1(x)), 0.2) + x = self.max_pool1(x) + x = F.leaky_relu(self.batch_norm2(self.conv2(x)), 0.2) + x = self.max_pool2(x) + x = F.leaky_relu(self.batch_norm3(self.conv3(x)), 0.2) + x = F.leaky_relu(self.batch_norm4(self.conv4(x)), 0.2) + x = self.max_pool3(x) + x = x.view(-1, (64 * 8) * 2 * 4) + embedding = self.batch_norm_fc(self.fc(x)) + + fa, fgs, fgd = embedding.split( + (self.opt.fa_dim, self.opt.fg_dim / 2, self.opt.fg_dim / 2), dim=1 + ) + return fa, fgs, fgd + + +class Decoder(nn.Module): + def __init__(self, out_channels: int, opt): + super(Decoder, self).__init__() + self.em_dim = opt.em_dim + nf = 64 + + # Cx[HxW] + # FC 320 -> 512*4*2 + self.fc = nn.Linear(self.em_dim, nf * 8 * 2 * 4) + self.batch_norm_fc = nn.BatchNorm1d(nf * 8 * 2 * 4) + # TransConv1 512x4x2 -> 256x8x4 + self.trans_conv1 = nn.ConvTranspose2d(nf * 8, nf * 4, kernel_size=4, + stride=2, padding=1) + self.batch_norm1 = nn.BatchNorm2d(nf * 4) + # TransConv2 256x8x4 -> 128x16x8 + self.trans_conv2 = nn.ConvTranspose2d(nf * 4, nf * 2, kernel_size=4, + stride=2, padding=1) + self.batch_norm2 = nn.BatchNorm2d(nf * 2) + # TransConv3 128x16x8 -> 64x32x16 + self.trans_conv3 = nn.ConvTranspose2d(nf * 2, nf, kernel_size=4, + stride=2, padding=1) + self.batch_norm3 = nn.BatchNorm2d(nf) + # TransConv4 3x32x16 + self.trans_conv4 = nn.ConvTranspose2d(nf, out_channels, kernel_size=4, + stride=2, padding=1) + + def forward(self, fa, fgs, fgd): + x = torch.cat((fa, fgs, fgd), dim=1).view(-1, self.em_dim) + x = F.leaky_relu(self.batch_norm_fc(self.fc(x)), 0.2) + x = F.leaky_relu(self.batch_norm1(self.trans_conv1(x)), 0.2) + x = F.leaky_relu(self.batch_norm2(self.trans_conv2(x)), 0.2) + x = F.leaky_relu(self.batch_norm3(self.trans_conv3(x)), 0.2) + x = F.sigmoid(self.trans_conv4(x)) + + return x + + +class FocalConv2d(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int]], + halving: int, + **kwargs + ): + super(FocalConv2d, self).__init__() + self.halving = halving + self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, + bias=False, **kwargs) + + def forward(self, x): + h = x.size(2) + split_size = h // 2 ** self.halving + z = x.split(split_size, dim=2) + z = torch.cat([self.conv(_) for _ in z], dim=2) + return F.leaky_relu(z, inplace=True) + + +class FrameLevelPartFeatureExtractor(nn.Module): + + def __init__(self, in_channels: int): + super(FrameLevelPartFeatureExtractor, self).__init__() + nf = 32 + + self.focal_conv1 = FocalConv2d(in_channels, nf, kernel_size=5, + padding=2, halving=1) + self.focal_conv2 = FocalConv2d(nf, nf, kernel_size=3, + padding=1, halving=1) + self.focal_conv3 = FocalConv2d(nf, nf * 2, kernel_size=3, + padding=1, halving=4) + self.focal_conv4 = FocalConv2d(nf * 2, nf * 2, kernel_size=3, + padding=1, halving=4) + self.focal_conv5 = FocalConv2d(nf * 2, nf * 4, kernel_size=3, + padding=1, halving=8) + self.focal_conv6 = FocalConv2d(nf * 4, nf * 4, kernel_size=3, + padding=1, halving=8) + self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) + + def forward(self, x): + x = F.leaky_relu(self.focal_conv1(x)) + x = F.leaky_relu(self.focal_conv2(x)) + x = self.max_pool(x) + x = F.leaky_relu(self.focal_conv3(x)) + x = F.leaky_relu(self.focal_conv4(x)) + x = self.max_pool(x) + x = F.leaky_relu(self.focal_conv5(x)) + x = F.leaky_relu(self.focal_conv6(x)) + + return x + + +class TemporalFeatureAggregator(nn.Module): + def __init__( + self, + in_channels: int, + squeeze: int = 4, + num_part: int = 16 + ): + super(TemporalFeatureAggregator, self).__init__() + hidden_dim = in_channels // squeeze + self.num_part = num_part + + # MTB1 + conv3x1 = nn.Sequential( + nn.Conv1d(in_channels, hidden_dim, + kernel_size=3, padding=1, bias=False), + nn.LeakyReLU(inplace=True), + nn.Conv1d(hidden_dim, in_channels, + kernel_size=1, padding=0, bias=False) + ) + self.conv1d3x1 = self._parted(conv3x1) + self.avg_pool3x1 = nn.AvgPool1d(kernel_size=3, stride=1, padding=1) + self.max_pool3x1 = nn.MaxPool1d(kernel_size=3, stride=1, padding=1) + + # MTB2 + conv3x3 = nn.Sequential( + nn.Conv1d(in_channels, hidden_dim, + kernel_size=3, padding=1, bias=False), + nn.LeakyReLU(inplace=True), + nn.Conv1d(hidden_dim, in_channels, + kernel_size=3, padding=1, bias=False) + ) + self.conv1d3x3 = self._parted(conv3x3) + self.avg_pool3x3 = nn.AvgPool1d(kernel_size=5, stride=1, padding=2) + self.max_pool3x3 = nn.MaxPool1d(kernel_size=5, stride=1, padding=2) + + def _parted(self, module: nn.Module): + """Duplicate module `part_num` times.""" + return nn.ModuleList([copy.deepcopy(module) + for _ in range(self.num_part)]) + + def forward(self, x): + """ + Input: x, [p, n, c, s] + """ + p, n, c, s = x.size() + feature = x.split(1, 0) + x = x.view(-1, c, s) + + # MTB1: ConvNet1d & Sigmoid + logits3x1 = torch.cat( + [conv(_.squeeze(0)).unsqueeze(0) + for conv, _ in zip(self.conv1d3x1, feature)], dim=0 + ) + scores3x1 = torch.sigmoid(logits3x1) + # MTB1: Template Function + feature3x1 = self.avg_pool3x1(x) + self.max_pool3x1(x) + feature3x1 = feature3x1.view(p, n, c, s) + feature3x1 = feature3x1 * scores3x1 + + # MTB2: ConvNet1d & Sigmoid + logits3x3 = torch.cat( + [conv(_.squeeze(0)).unsqueeze(0) + for conv, _ in zip(self.conv1d3x3, feature)], dim=0 + ) + scores3x3 = torch.sigmoid(logits3x3) + # MTB2: Template Function + feature3x3 = self.avg_pool3x3(x) + self.max_pool3x3(x) + feature3x3 = feature3x3.view(p, n, c, s) + feature3x3 = feature3x3 * scores3x3 + + # Temporal Pooling + ret = (feature3x1 + feature3x3).max(-1)[0] + return ret |