summaryrefslogtreecommitdiff
path: root/models/auto_encoder.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-04-04 17:44:23 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-04-04 17:44:23 +0800
commit6f3dd9109b8ae7b37e3373d844a6c406d83c2b35 (patch)
treea530221dfef3100a236c4091c3d0c15ea636d9e5 /models/auto_encoder.py
parent6a8824e4fb8bdd1f3e763b78b765830788415cfb (diff)
parent85627d4cfb495453a7c28b3f131b84b1038af674 (diff)
Merge branch 'disentangling_only' into disentangling_only_py3.8disentangling_only_py3.8
Diffstat (limited to 'models/auto_encoder.py')
-rw-r--r--models/auto_encoder.py9
1 files changed, 7 insertions, 2 deletions
diff --git a/models/auto_encoder.py b/models/auto_encoder.py
index b1d51ef..61622eb 100644
--- a/models/auto_encoder.py
+++ b/models/auto_encoder.py
@@ -112,7 +112,7 @@ class Decoder(nn.Module):
x = torch.cat((f_appearance, f_canonical, f_pose), dim=1)
x = self.fc(x)
x = x.view(-1, self.feature_channels * 8, self.h_0, self.w_0)
- x = F.relu(x, inplace=True)
+ x = F.leaky_relu(x, 0.2, inplace=True)
x = self.trans_conv1(x)
x = self.trans_conv2(x)
x = self.trans_conv3(x)
@@ -124,6 +124,7 @@ class Decoder(nn.Module):
class AutoEncoder(nn.Module):
def __init__(
self,
+ num_class: int,
channels: int = 3,
frame_size: Tuple[int, int] = (64, 48),
feature_channels: int = 64,
@@ -134,8 +135,9 @@ class AutoEncoder(nn.Module):
feature_channels, embedding_dims)
self.decoder = Decoder(embedding_dims, feature_channels,
self.encoder.feature_size, channels)
+ self.classifier = BasicLinear(embedding_dims[1], num_class)
- def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None):
+ def forward(self, x_c1_t2, x_c1_t1=None, x_c2_t2=None, y=None):
n, t, c, h, w = x_c1_t2.size()
# x_c1_t2 is the frame for later module
x_c1_t2_ = x_c1_t2.view(n * t, c, h, w)
@@ -162,6 +164,9 @@ class AutoEncoder(nn.Module):
cano_cons_loss = torch.stack([
F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :])
+ F.mse_loss(f_c_c1_t2[:, i, :], f_c_c2_t2[:, i, :])
+ + F.cross_entropy(self.classifier(
+ F.leaky_relu(f_c_c1_t2[:, i, :], 0.2)
+ ), y)
for i in range(t)
]).mean()