summaryrefslogtreecommitdiff
path: root/models/model.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2021-02-20 14:45:47 +0800
committerJordan Gong <jordan.gong@protonmail.com>2021-02-20 14:45:47 +0800
commit4661b1966d108c40c78ed5afbc9837108be845eb (patch)
tree9b620f0bc29f49885bb401a2c1755601b3fbb67f /models/model.py
parentc6bff0a8350da4f4d42b6d17052c8fae37633237 (diff)
parentc538919cb69e35a46811aef0b23baefe6a4c499c (diff)
Merge branch 'python3.8' into python3.7
Diffstat (limited to 'models/model.py')
-rw-r--r--models/model.py21
1 files changed, 18 insertions, 3 deletions
diff --git a/models/model.py b/models/model.py
index 09ddaf1..d179361 100644
--- a/models/model.py
+++ b/models/model.py
@@ -15,6 +15,7 @@ from tqdm import tqdm
from models.rgb_part_net import RGBPartNet
from utils.dataset import CASIAB, ClipConditions, ClipViews, ClipClasses
from utils.sampler import TripletSampler
+from utils.triplet_loss import JointBatchAllTripletLoss
class Model:
@@ -64,6 +65,7 @@ class Model:
self._dataset_sig: str = 'undefined'
self.rgb_pn: Optional[RGBPartNet] = None
+ self.ba_triplet_loss: Optional[JointBatchAllTripletLoss] = None
self.optimizer: Optional[optim.Adam] = None
self.scheduler: Optional[optim.lr_scheduler.StepLR] = None
self.writer: Optional[SummaryWriter] = None
@@ -137,7 +139,8 @@ class Model:
dataset = self._parse_dataset_config(dataset_config)
dataloader = self._parse_dataloader_config(dataset, dataloader_config)
# Prepare for model, optimizer and scheduler
- model_hp = self.hp.get('model', {})
+ model_hp: Dict = self.hp.get('model', {}).copy()
+ triplet_margins = model_hp.pop('triplet_margins', (0.2, 0.2))
optim_hp: Dict = self.hp.get('optimizer', {}).copy()
start_iter = optim_hp.pop('start_iter', 0)
ae_optim_hp = optim_hp.pop('auto_encoder', {})
@@ -147,8 +150,12 @@ class Model:
sched_hp = self.hp.get('scheduler', {})
self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp,
image_log_on=self.image_log_on)
+ self.ba_triplet_loss = JointBatchAllTripletLoss(
+ self.rgb_pn.hpm_num_parts, triplet_margins
+ )
# Try to accelerate computation using CUDA or others
self.rgb_pn = self.rgb_pn.to(self.device)
+ self.ba_triplet_loss = self.ba_triplet_loss.to(self.device)
self.optimizer = optim.Adam([
{'params': self.rgb_pn.ae.parameters(), **ae_optim_hp},
{'params': self.rgb_pn.pn.parameters(), **pn_optim_hp},
@@ -190,10 +197,18 @@ class Model:
# forward + backward + optimize
x_c1 = batch_c1['clip'].to(self.device)
x_c2 = batch_c2['clip'].to(self.device)
+ feature, ae_losses, images = self.rgb_pn(x_c1, x_c2)
y = batch_c1['label'].to(self.device)
# Duplicate labels for each part
- y = y.unsqueeze(1).repeat(1, self.rgb_pn.num_total_parts)
- losses, images = self.rgb_pn(x_c1, x_c2, y)
+ y = y.repeat(self.rgb_pn.num_total_parts, 1)
+ triplet_loss = self.ba_triplet_loss(feature, y)
+ losses = torch.cat((
+ ae_losses,
+ torch.stack((
+ triplet_loss[:self.rgb_pn.hpm_num_parts].mean(),
+ triplet_loss[self.rgb_pn.hpm_num_parts:].mean()
+ ))
+ ))
loss = losses.sum()
loss.backward()
self.optimizer.step()