diff options
author | Jordan Gong <jordan.gong@protonmail.com> | 2021-01-21 23:32:53 +0800 |
---|---|---|
committer | Jordan Gong <jordan.gong@protonmail.com> | 2021-01-21 23:32:53 +0800 |
commit | 04c9d3210ff659bbe00dedb2d193a748e7a97b54 (patch) | |
tree | 8a6e2029f60579da59a40bca0de52696aa2aaae8 /models | |
parent | 59ccfd7718babe94fac549fcfbfa22bb311f0bd8 (diff) |
Print average losses after 100 iters
Diffstat (limited to 'models')
-rw-r--r-- | models/model.py | 20 | ||||
-rw-r--r-- | models/rgb_part_net.py | 5 |
2 files changed, 15 insertions, 10 deletions
diff --git a/models/model.py b/models/model.py index 8797636..3b54363 100644 --- a/models/model.py +++ b/models/model.py @@ -164,6 +164,9 @@ class Model: # Training start start_time = datetime.now() + running_loss = torch.zeros(4).to(self.device) + print(f"{'Iter':^5} {'Loss':^6} {'Xrecon':^8} {'PoseSim':^8}", + f"{'CanoCons':^8} {'BATrip':^8} {'LR':^9}") for (batch_c1, batch_c2) in dataloader: self.curr_iter += 1 # Zero the parameter gradients @@ -172,24 +175,27 @@ class Model: x_c1 = batch_c1['clip'].to(self.device) x_c2 = batch_c2['clip'].to(self.device) y = batch_c1['label'].to(self.device) - loss, metrics = self.rgb_pn(x_c1, x_c2, y) + losses = self.rgb_pn(x_c1, x_c2, y) + loss = losses.sum() loss.backward() self.optimizer.step() # Step scheduler self.scheduler.step() + # Statistics and checkpoint + running_loss += losses.detach() # Write losses to TensorBoard - self.writer.add_scalar('Loss/all', loss.item(), self.curr_iter) + self.writer.add_scalar('Loss/all', loss, self.curr_iter) self.writer.add_scalars('Loss/details', dict(zip([ 'Cross reconstruction loss', 'Pose similarity loss', 'Canonical consistency loss', 'Batch All triplet loss' - ], metrics)), self.curr_iter) + ], losses)), self.curr_iter) if self.curr_iter % 100 == 0: - print('{0:5d} loss: {1:6.3f}'.format(self.curr_iter, loss), - '(xrecon = {:f}, pose_sim = {:f},' - ' cano_cons = {:f}, ba_trip = {:f})'.format(*metrics), - 'lr:', self.scheduler.get_last_lr()[0]) + print(f'{self.curr_iter:5d} {running_loss.sum() / 100:6.3f}', + '{:f} {:f} {:f} {:f}'.format(*running_loss / 100), + f'{self.scheduler.get_last_lr()[0]:.3e}') + running_loss.zero_() if self.curr_iter % 1000 == 0: torch.save({ diff --git a/models/rgb_part_net.py b/models/rgb_part_net.py index f39b40b..e707c26 100644 --- a/models/rgb_part_net.py +++ b/models/rgb_part_net.py @@ -80,9 +80,8 @@ class RGBPartNet(nn.Module): if self.training: batch_all_triplet_loss = self.ba_triplet_loss(x, y) - losses = (*losses, batch_all_triplet_loss) - loss = torch.sum(torch.stack(losses)) - return loss, [loss.item() for loss in losses] + losses = torch.stack((*losses, batch_all_triplet_loss)) + return losses else: return x.unsqueeze(1).view(-1) |