summaryrefslogtreecommitdiff
path: root/utils/dataset.py
diff options
context:
space:
mode:
authorJordan Gong <jordan.gong@protonmail.com>2020-12-27 11:15:51 +0800
committerJordan Gong <jordan.gong@protonmail.com>2020-12-27 11:15:51 +0800
commit81b12f9357ca737599fbc11c732020666ad0873f (patch)
tree21beabf4ad44a0098478e143d8032bb42e5e92c0 /utils/dataset.py
parent31b20fbff0786c998c54b8585de759d02f41eda7 (diff)
Adopt type hinting generics in standard collections (PEP 585)
Diffstat (limited to 'utils/dataset.py')
-rw-r--r--utils/dataset.py30
1 files changed, 15 insertions, 15 deletions
diff --git a/utils/dataset.py b/utils/dataset.py
index ecdd2d9..9f9229a 100644
--- a/utils/dataset.py
+++ b/utils/dataset.py
@@ -1,18 +1,18 @@
import os
import random
import re
-from typing import Optional, Dict, NewType, Union, List, Set, Tuple
+from typing import Optional, NewType, Union
import numpy as np
import torch
+import torchvision.transforms as transforms
from PIL import Image
from torch.utils import data
-import torchvision.transforms as transforms
from tqdm import tqdm
-ClipLabels = NewType('ClipLabels', Set[str])
-ClipConditions = NewType('ClipConditions', Set[str])
-ClipViews = NewType('ClipViews', Set[str])
+ClipLabels = NewType('ClipLabels', set[str])
+ClipConditions = NewType('ClipConditions', set[str])
+ClipViews = NewType('ClipViews', set[str])
class CASIAB(data.Dataset):
@@ -25,11 +25,11 @@ class CASIAB(data.Dataset):
train_size: int = 74,
num_sampled_frames: int = 30,
discard_threshold: int = 15,
- selector: Optional[Dict[
+ selector: Optional[dict[
str, Union[ClipLabels, ClipConditions, ClipLabels]
]] = None,
num_input_channels: int = 3,
- frame_size: Tuple[int, int] = (64, 32),
+ frame_size: tuple[int, int] = (64, 32),
cache_on: bool = False
):
"""
@@ -77,15 +77,15 @@ class CASIAB(data.Dataset):
self.conditions: np.ndarray[np.str_]
self.views: np.ndarray[np.str_]
# Video clip directory names
- self._clip_names: List[str] = []
+ self._clip_names: list[str] = []
# Labels, conditions and views in dataset,
# set of three attributes above
- self.metadata = Dict[str, Set[str]]
+ self.metadata = dict[str, set[str]]
# Dictionaries for indexing frames and frame names by clip name
# and chip path when cache is on
- self._cached_clips_frame_names: Optional[Dict[str, List[str]]] = None
- self._cached_clips: Optional[Dict[str, torch.Tensor]] = None
+ self._cached_clips_frame_names: Optional[dict[str, list[str]]] = None
+ self._cached_clips: Optional[dict[str, torch.Tensor]] = None
clip_names = sorted(os.listdir(self.root_dir))
@@ -172,7 +172,7 @@ class CASIAB(data.Dataset):
def __len__(self) -> int:
return len(self.labels)
- def __getitem__(self, index: int) -> Dict[str, Union[str, torch.Tensor]]:
+ def __getitem__(self, index: int) -> dict[str, Union[str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
@@ -217,8 +217,8 @@ class CASIAB(data.Dataset):
def _load_cached_video(
self,
clip: torch.Tensor,
- frame_names: List[str],
- sampled_frame_names: List[str]
+ frame_names: list[str],
+ sampled_frame_names: list[str]
) -> torch.Tensor:
# Mask the original clip when it is long enough
if len(frame_names) >= self.num_sampled_frames:
@@ -248,7 +248,7 @@ class CASIAB(data.Dataset):
return clip
def _sample_frames(self, clip_path: str,
- is_caching: bool = False) -> List[str]:
+ is_caching: bool = False) -> list[str]:
if self.cache_on:
if is_caching:
# Sort frame in advance for loading convenience