diff options
Diffstat (limited to 'models/model.py')
-rw-r--r-- | models/model.py | 14 |
1 files changed, 14 insertions, 0 deletions
diff --git a/models/model.py b/models/model.py index c407d6c..ebd6aba 100644 --- a/models/model.py +++ b/models/model.py @@ -2,6 +2,7 @@ from typing import Union, Optional import numpy as np import torch +import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate @@ -67,6 +68,7 @@ class Model: self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, 500, 0.9) self.rbg_pn.train() + self.rbg_pn.apply(self.init_weights) for iter_i, (x_c1, x_c2) in enumerate(dataloader): loss = self.rbg_pn(x_c1['clip'], x_c2['clip'], x_c1['label']) loss.backward() @@ -76,6 +78,18 @@ class Model: if iter_i == self.meta['total_iter']: break + @staticmethod + def init_weights(m): + if isinstance(m, nn.modules.conv._ConvNd): + nn.init.xavier_uniform_(m.weight) + elif isinstance(m, nn.modules.batchnorm._NormBase): + nn.init.normal_(m.weight, 1.0, 0.01) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.xavier_uniform_(m.weight) + elif isinstance(m, nn.Parameter): + nn.init.xavier_uniform_(m) + def _parse_dataset_config( self, dataset_config: DatasetConfiguration |