1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
from typing import Union
import torch.nn as nn
import torch.nn.functional as F
class BasicConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple[int, int]],
**kwargs
):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class VGGConv2d(BasicConv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple[int, int]] = 3,
padding: int = 1,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size,
padding=padding, **kwargs)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.leaky_relu(x, 0.2, inplace=True)
class BasicConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple[int, int]],
**kwargs
):
super().__init__()
self.trans_conv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.trans_conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class DCGANConvTranspose2d(BasicConvTranspose2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple[int, int]] = 4,
stride: int = 2,
padding: int = 1,
is_last_layer: bool = False,
**kwargs
):
super().__init__(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, **kwargs)
self.is_last_layer = is_last_layer
def forward(self, x):
if self.is_last_layer:
return self.trans_conv(x)
else:
return super().forward(x)
class BasicLinear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
):
super().__init__()
self.fc = nn.Linear(in_features, out_features, bias=False)
self.bn = nn.BatchNorm1d(out_features)
def forward(self, x):
x = self.fc(x)
x = self.bn(x)
return x
|