summaryrefslogtreecommitdiff
path: root/models/model.py
blob: 9cac5e53518dafc86a21dc05b6bafbd682c5ea04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
import copy
import os
import random
from typing import Union, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

from models.hpm import HorizontalPyramidMatching
from models.part_net import PartNet
from models.rgb_part_net import RGBPartNet
from utils.configuration import DataloaderConfiguration, \
    HyperparameterConfiguration, DatasetConfiguration, ModelConfiguration, \
    SystemConfiguration
from utils.dataset import CASIAB, ClipConditions, ClipViews, ClipClasses
from utils.sampler import TripletSampler
from utils.triplet_loss import BatchTripletLoss


class Model:
    def __init__(
            self,
            system_config: SystemConfiguration,
            model_config: ModelConfiguration,
            hyperparameter_config: HyperparameterConfiguration
    ):
        self.disable_acc = system_config.get('disable_acc', False)
        if self.disable_acc:
            self.device = torch.device('cpu')
        else:  # Enable accelerator
            if torch.cuda.is_available():
                self.device = torch.device('cuda')
            else:
                print('No accelerator available, fallback to CPU.')
                self.device = torch.device('cpu')

        self.save_dir = system_config.get('save_dir', 'runs')
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')
        self.log_dir = os.path.join(self.save_dir, 'logs')
        for dir_ in (self.log_dir, self.checkpoint_dir):
            if not os.path.exists(dir_):
                os.mkdir(dir_)

        self.meta = model_config
        self.hp = hyperparameter_config
        self.restore_iter = self.curr_iter = self.meta.get('restore_iter', 0)
        self.total_iter = self.meta.get('total_iter', 80_000)
        self.restore_iters = self.meta.get('restore_iters', (self.curr_iter,))
        self.total_iters = self.meta.get('total_iters', (self.total_iter,))

        self.is_train: bool = True
        self.in_channels: int = 3
        self.in_size: tuple[int, int] = (64, 48)
        self.pr: Optional[int] = None
        self.k: Optional[int] = None
        self.num_pairs: Optional[int] = None
        self.num_pos_pairs: Optional[int] = None

        self._gallery_dataset_meta: Optional[dict[str, list]] = None
        self._probe_datasets_meta: Optional[dict[str, dict[str, list]]] = None

        self._model_name: str = self.meta.get('name', 'RGB-GaitPart')
        self._hp_sig: str = self._make_signature(self.hp)
        self._dataset_sig: str = 'undefined'

        self.rgb_pn: Optional[RGBPartNet] = None
        self.triplet_loss_hpm: Optional[BatchTripletLoss] = None
        self.triplet_loss_pn: Optional[BatchTripletLoss] = None
        self.optimizer: Optional[optim.Adam] = None
        self.scheduler: Optional[optim.lr_scheduler.StepLR] = None
        self.writer: Optional[SummaryWriter] = None
        self.image_log_on = system_config.get('image_log_on', False)
        self.val_size = system_config.get('val_size', 10)

        self.CASIAB_GALLERY_SELECTOR = {
            'selector': {'conditions': ClipConditions({r'nm-0[1-4]'})}
        }
        self.CASIAB_PROBE_SELECTORS = {
            'nm': {'selector': {'conditions': ClipConditions({r'nm-0[5-6]'})}},
            'bg': {'selector': {'conditions': ClipConditions({r'bg-0[1-2]'})}},
            'cl': {'selector': {'conditions': ClipConditions({r'cl-0[1-2]'})}},
        }

    @property
    def _model_sig(self) -> str:
        return '_'.join(
            (self._model_name, str(self.curr_iter + 1), str(self.total_iter))
        )

    @property
    def _checkpoint_sig(self) -> str:
        return '_'.join((self._model_sig, self._hp_sig, self._dataset_sig,
                         str(self.pr), str(self.k)))

    @property
    def _checkpoint_name(self) -> str:
        return os.path.join(self.checkpoint_dir, self._checkpoint_sig)

    @property
    def _log_sig(self) -> str:
        return '_'.join((self._model_name, str(self.total_iter), self._hp_sig,
                         self._dataset_sig, str(self.pr), str(self.k)))

    @property
    def _log_name(self) -> str:
        return os.path.join(self.log_dir, self._log_sig)

    def fit_all(
            self,
            dataset_config: DatasetConfiguration,
            dataset_selectors: dict[
                str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
            ],
            dataloader_config: DataloaderConfiguration,
    ):
        for (restore_iter, total_iter, (condition, selector)) in zip(
                self.restore_iters, self.total_iters, dataset_selectors.items()
        ):
            print(f'Training model {condition} ...')
            # Skip finished model
            if restore_iter == total_iter:
                continue
            # Check invalid restore iter
            elif restore_iter > total_iter:
                raise ValueError("Restore iter '{}' should less than total "
                                 "iter '{}'".format(restore_iter, total_iter))
            self.restore_iter = self.curr_iter = restore_iter
            self.total_iter = total_iter
            self.fit(
                dict(**dataset_config, **{'selector': selector}),
                dataloader_config
            )

    def fit(
            self,
            dataset_config: DatasetConfiguration,
            dataloader_config: DataloaderConfiguration,
    ):
        self.is_train = True
        # Validation dataset
        # (the first `val_size` subjects from evaluation set)
        val_dataset_config = copy.deepcopy(dataset_config)
        train_size = dataset_config.get('train_size', 74)
        val_dataset_config['train_size'] = train_size + self.val_size
        val_dataset_config['selector']['classes'] = ClipClasses({
            str(c).zfill(3)
            for c in range(train_size + 1, train_size + self.val_size + 1)
        })
        val_dataset = self._parse_dataset_config(val_dataset_config)
        val_dataloader = iter(self._parse_dataloader_config(
            val_dataset, dataloader_config
        ))
        # Training dataset
        train_dataset = self._parse_dataset_config(dataset_config)
        train_dataloader = iter(self._parse_dataloader_config(
            train_dataset, dataloader_config
        ))
        # Prepare for model, optimizer and scheduler
        model_hp: dict = self.hp.get('model', {}).copy()
        triplet_is_hard = model_hp.pop('triplet_is_hard', True)
        triplet_is_mean = model_hp.pop('triplet_is_mean', True)
        triplet_margins = model_hp.pop('triplet_margins', None)
        optim_hp: dict = self.hp.get('optimizer', {}).copy()
        ae_optim_hp = optim_hp.pop('auto_encoder', {})
        hpm_optim_hp = optim_hp.pop('hpm', {})
        pn_optim_hp = optim_hp.pop('part_net', {})
        sched_hp = self.hp.get('scheduler', {})
        ae_sched_hp = sched_hp.get('auto_encoder', {})
        hpm_sched_hp = sched_hp.get('hpm', {})
        pn_sched_hp = sched_hp.get('part_net', {})

        self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp,
                                 image_log_on=self.image_log_on)
        # Hard margins
        if triplet_margins:
            self.triplet_loss_hpm = BatchTripletLoss(
                triplet_is_hard, triplet_is_mean, triplet_margins[0]
            )
            self.triplet_loss_pn = BatchTripletLoss(
                triplet_is_hard, triplet_is_mean, triplet_margins[1]
            )
        else:  # Soft margins
            self.triplet_loss_hpm = BatchTripletLoss(
                triplet_is_hard, triplet_is_mean, None
            )
            self.triplet_loss_pn = BatchTripletLoss(
                triplet_is_hard, triplet_is_mean, None
            )

        num_sampled_frames = dataset_config.get('num_sampled_frames', 30)
        self.num_pairs = (self.pr*self.k-1) * (self.pr*self.k) // 2
        self.num_pos_pairs = (self.k*(self.k-1)//2) * self.pr

        # Try to accelerate computation using CUDA or others
        self.rgb_pn = nn.DataParallel(self.rgb_pn)
        self.rgb_pn = self.rgb_pn.to(self.device)
        self.triplet_loss_hpm = nn.DataParallel(self.triplet_loss_hpm)
        self.triplet_loss_hpm = self.triplet_loss_hpm.to(self.device)
        self.triplet_loss_pn = nn.DataParallel(self.triplet_loss_pn)
        self.triplet_loss_pn = self.triplet_loss_pn.to(self.device)
        self.optimizer = optim.Adam([
            {'params': self.rgb_pn.module.ae.parameters(), **ae_optim_hp},
            {'params': self.rgb_pn.module.hpm.parameters(), **hpm_optim_hp},
            {'params': self.rgb_pn.module.pn.parameters(), **pn_optim_hp},
        ], **optim_hp)

        # Scheduler
        start_step = sched_hp.get('start_step', 15_000)
        final_gamma = sched_hp.get('final_gamma', 0.001)
        ae_start_step = ae_sched_hp.get('start_step', start_step)
        ae_final_gamma = ae_sched_hp.get('final_gamma', final_gamma)
        ae_all_step = self.total_iter - ae_start_step
        hpm_start_step = hpm_sched_hp.get('start_step', start_step)
        hpm_final_gamma = hpm_sched_hp.get('final_gamma', final_gamma)
        hpm_all_step = self.total_iter - hpm_start_step
        pn_start_step = pn_sched_hp.get('start_step', start_step)
        pn_final_gamma = pn_sched_hp.get('final_gamma', final_gamma)
        pn_all_step = self.total_iter - pn_start_step
        self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=[
            lambda t: ae_final_gamma ** ((t - ae_start_step) / ae_all_step)
            if t > ae_start_step else 1,
            lambda t: hpm_final_gamma ** ((t - hpm_start_step) / hpm_all_step)
            if t > hpm_start_step else 1,
            lambda t: pn_final_gamma ** ((t - pn_start_step) / pn_all_step)
            if t > pn_start_step else 1,
        ])

        self.writer = SummaryWriter(self._log_name)

        # Set seeds for reproducibility
        random.seed(0)
        torch.manual_seed(0)
        self.rgb_pn.train()
        # Init weights at first iter
        if self.curr_iter == 0:
            self.rgb_pn.apply(self.init_weights)
        else:  # Load saved state dicts
            # Offset a iter to load last checkpoint
            self.curr_iter -= 1
            checkpoint = torch.load(self._checkpoint_name)
            random.setstate(checkpoint['rand_states'][0])
            torch.set_rng_state(checkpoint['rand_states'][1])
            self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
            self.optimizer.load_state_dict(checkpoint['optim_state_dict'])
            self.scheduler.load_state_dict(checkpoint['sched_state_dict'])

        # Training start
        for self.curr_iter in tqdm(range(self.restore_iter, self.total_iter),
                                   desc='Training'):
            batch_c1, batch_c2 = next(train_dataloader)
            # Zero the parameter gradients
            self.optimizer.zero_grad()
            # forward + backward + optimize
            x_c1 = batch_c1['clip'].to(self.device)
            x_c2 = batch_c2['clip'].to(self.device)
            embed_c, embed_p, images, f_loss = self.rgb_pn(x_c1, x_c2)
            ae_losses = self._disentangling_loss(
                x_c1, f_loss, num_sampled_frames
            )
            embed_c, embed_p = embed_c.transpose(0, 1), embed_p.transpose(0, 1)
            y = batch_c1['label'].to(self.device)
            losses, hpm_result, pn_result = self._classification_loss(
                embed_c, embed_p, ae_losses, y
            )
            loss = losses.sum()
            loss.backward()
            self.optimizer.step()
            self.scheduler.step()

            # Learning rate
            self.writer.add_scalars('Learning rate', dict(zip((
                'Auto-encoder', 'HPM', 'PartNet'
            ), self.scheduler.get_last_lr())), self.curr_iter)
            # Other stats
            self._write_stat(
                'Train', embed_c, embed_p, hpm_result, pn_result, loss, losses
            )

            if self.curr_iter % 100 == 99:
                # Write disentangled images
                if self.image_log_on:
                    i_a, i_c, i_p = images
                    self.writer.add_images(
                        'Appearance image', i_a, self.curr_iter
                    )
                    self.writer.add_images(
                        'Canonical image', i_c, self.curr_iter
                    )
                    for i, (o, p) in enumerate(zip(x_c1, i_p)):
                        self.writer.add_images(
                            f'Original image/batch {i}', o, self.curr_iter
                        )
                        self.writer.add_images(
                            f'Pose image/batch {i}', p, self.curr_iter
                        )

                # Validation
                embed_c = self._flatten_embedding(embed_c)
                embed_p = self._flatten_embedding(embed_p)
                self._write_embedding('HPM Train', embed_c, x_c1, y)
                self._write_embedding('PartNet Train', embed_p, x_c1, y)

                # Calculate losses on testing batch
                batch_c1, batch_c2 = next(val_dataloader)
                x_c1 = batch_c1['clip'].to(self.device)
                x_c2 = batch_c2['clip'].to(self.device)
                with torch.no_grad():
                    embed_c, embed_p, _, f_loss = self.rgb_pn(x_c1, x_c2)
                ae_losses = self._disentangling_loss(
                    x_c1, f_loss, num_sampled_frames
                )
                embed_c = embed_c.transpose(0, 1)
                embed_p = embed_p.transpose(0, 1)
                y = batch_c1['label'].to(self.device)
                losses, hpm_result, pn_result = self._classification_loss(
                    embed_c, embed_p, ae_losses, y
                )
                loss = losses.sum()

                self._write_stat(
                    'Val', embed_c, embed_p, hpm_result, pn_result, loss, losses
                )
                embed_c = self._flatten_embedding(embed_c)
                embed_p = self._flatten_embedding(embed_p)
                self._write_embedding('HPM Val', embed_c, x_c1, y)
                self._write_embedding('PartNet Val', embed_p, x_c1, y)

            # Checkpoint
            if self.curr_iter % 1000 == 999:
                torch.save({
                    'rand_states': (random.getstate(), torch.get_rng_state()),
                    'model_state_dict': self.rgb_pn.state_dict(),
                    'optim_state_dict': self.optimizer.state_dict(),
                    'sched_state_dict': self.scheduler.state_dict(),
                }, self._checkpoint_name)

        self.writer.close()

    @staticmethod
    def _disentangling_loss(x_c1, feature_for_loss, num_sampled_frames):
        x_c1_pred = feature_for_loss[0]
        xrecon_loss = torch.stack([
            F.mse_loss(x_c1_pred[:, i, :, :, :], x_c1[:, i, :, :, :])
            for i in range(num_sampled_frames)
        ]).sum()
        f_c_c1_t1, f_c_c1_t2, f_c_c2_t2 = feature_for_loss[1]
        cano_cons_loss = torch.stack([
            F.mse_loss(f_c_c1_t1[:, i, :], f_c_c1_t2[:, i, :])
            + F.mse_loss(f_c_c1_t2[:, i, :], f_c_c2_t2[:, i, :])
            for i in range(num_sampled_frames)
        ]).mean()
        f_p_c1_t2, f_p_c2_t2 = feature_for_loss[2]
        pose_sim_loss = F.mse_loss(
            f_p_c1_t2.mean(1), f_p_c2_t2.mean(1)
        ) * 10
        return xrecon_loss, cano_cons_loss, pose_sim_loss

    def _classification_loss(self, embed_c, embed_p, ae_losses, y):
        # Duplicate labels for each part
        y_triplet = y.repeat(self.rgb_pn.module.num_parts, 1)
        hpm_result = self.triplet_loss_hpm(
            embed_c, y_triplet[:self.rgb_pn.module.hpm.num_parts]
        )
        pn_result = self.triplet_loss_pn(
            embed_p, y_triplet[self.rgb_pn.module.hpm.num_parts:]
        )
        losses = torch.stack((
            *ae_losses,
            hpm_result.pop('loss').mean(),
            pn_result.pop('loss').mean()
        ))
        return losses, hpm_result, pn_result

    def _write_embedding(self, tag, embed, x, y):
        frame = x[:, 0, :, :, :].cpu()
        n, c, h, w = frame.size()
        padding = torch.zeros(n, c, h, (h-w) // 2)
        padded_frame = torch.cat((padding, frame, padding), dim=-1)
        self.writer.add_embedding(
            embed,
            metadata=y.cpu().tolist(),
            label_img=padded_frame,
            global_step=self.curr_iter,
            tag=tag
        )

    def _flatten_embedding(self, embed):
        return embed.detach().transpose(0, 1).reshape(self.k * self.pr, -1)

    def _write_stat(
            self, postfix, embed_c, embed_p, hpm_result, pn_result, loss, losses
    ):
        # Write losses to TensorBoard
        self.writer.add_scalar(f'Loss/all {postfix}', loss, self.curr_iter)
        self.writer.add_scalars(f'Loss/disentanglement {postfix}', dict(zip((
            'Cross reconstruction loss', 'Canonical consistency loss',
            'Pose similarity loss'
        ), losses[:3])), self.curr_iter)
        self.writer.add_scalars(f'Loss/triplet loss {postfix}', {
            'HPM': losses[3],
            'PartNet': losses[4]
        }, self.curr_iter)
        # None-zero losses in batch
        if hpm_result['counts'] is not None and pn_result['counts'] is not None:
            self.writer.add_scalars(f'Loss/non-zero counts {postfix}', {
                'HPM': hpm_result['counts'].mean(),
                'PartNet': pn_result['counts'].mean()
            }, self.curr_iter)
        # Embedding distance
        mean_hpm_dist = hpm_result['dist'].mean(0)
        self._add_ranked_scalars(
            f'Embedding/HPM distance {postfix}', mean_hpm_dist,
            self.num_pos_pairs, self.num_pairs, self.curr_iter
        )
        mean_pn_dist = pn_result['dist'].mean(0)
        self._add_ranked_scalars(
            f'Embedding/ParNet distance {postfix}', mean_pn_dist,
            self.num_pos_pairs, self.num_pairs, self.curr_iter
        )
        # Embedding norm
        mean_hpm_embedding = embed_c.mean(0)
        mean_hpm_norm = mean_hpm_embedding.norm(dim=-1)
        self._add_ranked_scalars(
            f'Embedding/HPM norm {postfix}', mean_hpm_norm,
            self.k, self.pr * self.k, self.curr_iter
        )
        mean_pa_embedding = embed_p.mean(0)
        mean_pa_norm = mean_pa_embedding.norm(dim=-1)
        self._add_ranked_scalars(
            f'Embedding/PartNet norm {postfix}', mean_pa_norm,
            self.k, self.pr * self.k, self.curr_iter
        )

    def _add_ranked_scalars(
            self,
            main_tag: str,
            metric: torch.Tensor,
            num_pos: int,
            num_all: int,
            global_step: int
    ):
        rank = metric.argsort()
        pos_ile = 100 - (num_pos - 1) * 100 // num_all
        self.writer.add_scalars(main_tag, {
            '0%-ile': metric[rank[-1]],
            f'{100 - pos_ile}%-ile': metric[rank[-num_pos]],
            '50%-ile': metric[rank[num_all // 2 - 1]],
            f'{pos_ile}%-ile': metric[rank[num_pos - 1]],
            '100%-ile': metric[rank[0]]
        }, global_step)

    def predict_all(
            self,
            iters: tuple[int],
            dataset_config: DatasetConfiguration,
            dataset_selectors: dict[
                str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
            ],
            dataloader_config: DataloaderConfiguration,
    ) -> dict[str, torch.Tensor]:
        # Transform data to features
        gallery_samples, probe_samples = self.transform(
            iters, dataset_config, dataset_selectors, dataloader_config
        )
        # Evaluate features
        accuracy = self.evaluate(gallery_samples, probe_samples)

        return accuracy

    def transform(
            self,
            iters: tuple[int],
            dataset_config: DatasetConfiguration,
            dataset_selectors: dict[
                str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
            ],
            dataloader_config: DataloaderConfiguration,
            is_train: bool = False
    ):
        # Split gallery and probe dataset
        gallery_dataloader, probe_dataloaders = self._split_gallery_probe(
            dataset_config, dataloader_config, is_train
        )
        # Get pretrained models at iter_
        checkpoints = self._load_pretrained(
            iters, dataset_config, dataset_selectors
        )

        # Init models
        model_hp: dict = self.hp.get('model', {}).copy()
        model_hp.pop('triplet_is_hard', True)
        model_hp.pop('triplet_is_mean', True)
        model_hp.pop('triplet_margins', None)
        self.rgb_pn = RGBPartNet(self.in_channels, self.in_size, **model_hp)
        # Try to accelerate computation using CUDA or others
        self.rgb_pn = nn.DataParallel(self.rgb_pn)
        self.rgb_pn = self.rgb_pn.to(self.device)
        self.rgb_pn.eval()

        gallery_samples, probe_samples = {}, {}
        for (condition, probe_dataloader) in probe_dataloaders.items():
            checkpoint = torch.load(checkpoints[condition])
            self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
            # Gallery
            gallery_samples_c = []
            for sample in tqdm(gallery_dataloader,
                               desc=f'Transforming gallery {condition}',
                               unit='clips'):
                gallery_samples_c.append(self._get_eval_sample(sample))
            gallery_samples[condition] = default_collate(gallery_samples_c)
            # Probe
            probe_samples_c = []
            for sample in tqdm(probe_dataloader,
                               desc=f'Transforming probe {condition}',
                               unit='clips'):
                probe_samples_c.append(self._get_eval_sample(sample))
            probe_samples_c = default_collate(probe_samples_c)
            probe_samples_c['meta'] = self._probe_datasets_meta[condition]
            probe_samples[condition] = probe_samples_c
        gallery_samples['meta'] = self._gallery_dataset_meta

        return gallery_samples, probe_samples

    def _get_eval_sample(self, sample: dict[str, Union[list, torch.Tensor]]):
        label, condition, view, clip = sample.values()
        with torch.no_grad():
            feature_c, feature_p = self.rgb_pn(clip.to(self.device))
        return {
            'label': label.item(),
            'condition': condition[0],
            'view': view[0],
            'feature': torch.cat((feature_c, feature_p)).view(-1)
        }

    @staticmethod
    def evaluate(
            gallery_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
            probe_samples: dict[str, dict[str, Union[list, torch.Tensor]]],
            num_ranks: int = 5
    ) -> dict[str, torch.Tensor]:
        conditions = list(probe_samples.keys())
        gallery_views_meta = gallery_samples['meta']['views']
        probe_views_meta = probe_samples[conditions[0]]['meta']['views']
        accuracy = {
            condition: torch.empty(
                len(gallery_views_meta), len(probe_views_meta), num_ranks
            )
            for condition in conditions
        }

        for condition in conditions:
            gallery_samples_c = gallery_samples[condition]
            (labels_g, _, views_g, features_g) = gallery_samples_c.values()
            views_g = np.asarray(views_g)
            probe_samples_c = probe_samples[condition]
            (labels_p, _, views_p, features_p, _) = probe_samples_c.values()
            views_p = np.asarray(views_p)
            accuracy_c = accuracy[condition]
            for (v_g_i, view_g) in enumerate(gallery_views_meta):
                gallery_view_mask = (views_g == view_g)
                f_g = features_g[gallery_view_mask]
                y_g = labels_g[gallery_view_mask]
                for (v_p_i, view_p) in enumerate(probe_views_meta):
                    probe_view_mask = (views_p == view_p)
                    f_p = features_p[probe_view_mask]
                    y_p = labels_p[probe_view_mask]
                    # Euclidean distance
                    f_p_squared_sum = torch.sum(f_p ** 2, dim=1).unsqueeze(1)
                    f_g_squared_sum = torch.sum(f_g ** 2, dim=1).unsqueeze(0)
                    f_p_times_f_g_sum = f_p @ f_g.T
                    dist = torch.sqrt(F.relu(
                        f_p_squared_sum - 2*f_p_times_f_g_sum + f_g_squared_sum
                    ))
                    # Ranked accuracy
                    rank_mask = dist.argsort(1)[:, :num_ranks]
                    positive_mat = torch.eq(y_p.unsqueeze(1),
                                            y_g[rank_mask]).cumsum(1).gt(0)
                    positive_counts = positive_mat.sum(0)
                    total_counts, _ = dist.size()
                    accuracy_c[v_g_i, v_p_i, :] = positive_counts / total_counts
        return accuracy

    def _load_pretrained(
            self,
            iters: tuple[int],
            dataset_config: DatasetConfiguration,
            dataset_selectors: dict[
                str, dict[str, Union[ClipClasses, ClipConditions, ClipViews]]
            ]
    ) -> dict[str, str]:
        checkpoints = {}
        for (iter_, total_iter, (condition, selector)) in zip(
                iters, self.total_iters, dataset_selectors.items()
        ):
            self.curr_iter = iter_ - 1
            self.total_iter = total_iter
            self._dataset_sig = self._make_signature(
                dict(**dataset_config, **selector),
                popped_keys=['root_dir', 'cache_on']
            )
            checkpoints[condition] = self._checkpoint_name
        return checkpoints

    def _split_gallery_probe(
            self,
            dataset_config: DatasetConfiguration,
            dataloader_config: DataloaderConfiguration,
            is_train: bool = False
    ) -> tuple[DataLoader, dict[str, DataLoader]]:
        dataset_name = dataset_config.get('name', 'CASIA-B')
        if dataset_name == 'CASIA-B':
            self.is_train = is_train
            gallery_dataset = self._parse_dataset_config(
                dict(**dataset_config, **self.CASIAB_GALLERY_SELECTOR)
            )
            probe_datasets = {
                condition: self._parse_dataset_config(
                    dict(**dataset_config, **selector)
                )
                for (condition, selector) in self.CASIAB_PROBE_SELECTORS.items()
            }
            self._gallery_dataset_meta = gallery_dataset.metadata
            self._probe_datasets_meta = {
                condition: dataset.metadata
                for (condition, dataset) in probe_datasets.items()
            }
            self.is_train = False
            gallery_dataloader = self._parse_dataloader_config(
                gallery_dataset, dataloader_config
            )
            probe_dataloaders = {
                condition: self._parse_dataloader_config(
                    dataset, dataloader_config
                )
                for (condition, dataset) in probe_datasets.items()
            }
        elif dataset_name == 'FVG':
            # TODO
            gallery_dataloader = None
            probe_dataloaders = None
        else:
            raise ValueError('Invalid dataset: {0}'.format(dataset_name))

        return gallery_dataloader, probe_dataloaders

    @staticmethod
    def init_weights(m):
        if isinstance(m, nn.modules.conv._ConvNd):
            nn.init.normal_(m.weight, 0.0, 0.01)
        elif isinstance(m, nn.modules.batchnorm._NormBase):
            nn.init.normal_(m.weight, 1.0, 0.01)
            nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
        elif isinstance(m, (HorizontalPyramidMatching, PartNet)):
            nn.init.xavier_uniform_(m.fc_mat)

    def _parse_dataset_config(
            self,
            dataset_config: DatasetConfiguration
    ) -> Union[CASIAB]:
        self.in_channels = dataset_config.get('num_input_channels', 3)
        self.in_size = dataset_config.get('frame_size', (64, 48))
        self._dataset_sig = self._make_signature(
            dataset_config,
            popped_keys=['root_dir', 'cache_on']
        )
        config: dict = dataset_config.copy()
        name = config.pop('name', 'CASIA-B')
        if name == 'CASIA-B':
            return CASIAB(**config, is_train=self.is_train)
        elif name == 'FVG':
            # TODO
            pass
        raise ValueError('Invalid dataset: {0}'.format(name))

    def _parse_dataloader_config(
            self,
            dataset: Union[CASIAB],
            dataloader_config: DataloaderConfiguration
    ) -> DataLoader:
        config: dict = dataloader_config.copy()
        (self.pr, self.k) = config.pop('batch_size', (8, 16))
        if self.is_train:
            triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
            return DataLoader(dataset,
                              batch_sampler=triplet_sampler,
                              collate_fn=self._batch_splitter,
                              **config)
        else:  # is_test
            return DataLoader(dataset, **config)

    def _batch_splitter(
            self,
            batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
    ) -> tuple[dict[str, Union[list[str], torch.Tensor]],
               dict[str, Union[list[str], torch.Tensor]]]:
        """
        Disentanglement need two random conditions, this function will
        split pr * k * 2 samples to 2 dicts each containing pr * k
        samples. labels and clip data are tensor, and others are list.
        """
        _batch = [[], []]
        for i in range(0, self.pr * self.k * 2, self.k * 2):
            _batch[0] += batch[i:i + self.k]
            _batch[1] += batch[i + self.k:i + self.k * 2]

        return default_collate(_batch[0]), default_collate(_batch[1])

    def _make_signature(self,
                        config: dict,
                        popped_keys: Optional[list] = None) -> str:
        _config = config.copy()
        if popped_keys:
            for key in popped_keys:
                _config.pop(key, None)

        return self._gen_sig(list(_config.values()))

    def _gen_sig(self, values: Union[tuple, list, set, str, int, float]) -> str:
        strings = []
        for v in values:
            if isinstance(v, str):
                strings.append(v)
            elif isinstance(v, (tuple, list)):
                strings.append(self._gen_sig(v))
            elif isinstance(v, set):
                strings.append(self._gen_sig(sorted(list(v))))
            elif isinstance(v, dict):
                strings.append(self._gen_sig(list(v.values())))
            else:
                strings.append(str(v))
        return '_'.join(strings)