summaryrefslogtreecommitdiff
path: root/models/model.py
blob: 9e52527a7423b080aff04a6e83bf4ba0f696609a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
from typing import Union, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate

from models import RGBPartNet
from utils.configuration import DataloaderConfiguration, \
    HyperparameterConfiguration, DatasetConfiguration, ModelConfiguration, \
    SystemConfiguration
from utils.dataset import CASIAB
from utils.sampler import TripletSampler


class Model:
    def __init__(
            self,
            system_config: SystemConfiguration,
            model_config: ModelConfiguration,
            hyperparameter_config: HyperparameterConfiguration
    ):
        self.device = system_config['device']
        self.save_dir = system_config['save_dir']

        self.meta = model_config
        self.hp = hyperparameter_config
        self.curr_iter = self.meta['restore_iter']
        self.total_iter = self.meta['total_iter']

        self.is_train: bool = True
        self.train_size: int = 74
        self.in_channels: int = 3
        self.pr: Optional[int] = None
        self.k: Optional[int] = None

        self._model_sig: str = self._make_signature(self.meta, ['restore_iter'])
        self._hp_sig: str = self._make_signature(self.hp)
        self._dataset_sig: str = 'undefined'

        self.rgb_pn: Optional[RGBPartNet] = None
        self.optimizer: Optional[optim.Adam] = None
        self.scheduler: Optional[optim.lr_scheduler.StepLR] = None

    @property
    def signature(self) -> str:
        return '_'.join((self._model_sig, str(self.curr_iter), self._hp_sig,
                         self._dataset_sig, str(self.batch_size)))

    @property
    def batch_size(self) -> int:
        if self.is_train:
            if self.pr and self.k:
                return self.pr * self.k
            raise AttributeError('No dataset loaded')
        else:
            return 1

    def fit(
            self,
            dataset_config: DatasetConfiguration,
            dataloader_config: DataloaderConfiguration,
    ):
        self.is_train = True
        dataset = self._parse_dataset_config(dataset_config)
        dataloader = self._parse_dataloader_config(dataset, dataloader_config)
        # Prepare for model, optimizer and scheduler
        hp = self.hp.copy()
        lr, betas = hp.pop('lr', 1e-4), hp.pop('betas', (0.9, 0.999))
        self.rgb_pn = RGBPartNet(self.train_size, self.in_channels, **hp)
        self.optimizer = optim.Adam(self.rgb_pn.parameters(), lr, betas)
        self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, 500, 0.9)

        self.rgb_pn.train()
        # Init weights at first iter
        if self.curr_iter == 0:
            self.rgb_pn.apply(self.init_weights)
        else:  # Load saved state dicts
            checkpoint = torch.load(os.path.join(self.save_dir, self.signature))
            iter, loss = checkpoint['iter'], checkpoint['loss']
            print('{0:5d} loss: {1:.3f}'.format(iter, loss))
            self.rgb_pn.load_state_dict(checkpoint['model_state_dict'])
            self.optimizer.load_state_dict(checkpoint['optim_state_dict'])
        for (x_c1, x_c2) in dataloader:
            self.curr_iter += 1
            # Zero the parameter gradients
            self.optimizer.zero_grad()
            # forward + backward + optimize
            loss, metrics = self.rgb_pn(x_c1['clip'], x_c2['clip'],
                                        x_c1['label'])
            loss.backward()
            self.optimizer.step()
            # Step scheduler
            self.scheduler.step(self.curr_iter)

            if self.curr_iter % 100 == 0:
                print('{0:5d} loss: {1:.3f}'.format(self.curr_iter, loss),
                      '(xrecon = {:f}, pose_sim = {:f},'
                      ' cano_cons = {:f}, ba_trip = {:f})'.format(*metrics),
                      'lr:', self.scheduler.get_last_lr())

            if self.curr_iter % 1000 == 0:
                torch.save({
                    'iter': self.curr_iter,
                    'model_state_dict': self.rgb_pn.state_dict(),
                    'optim_state_dict': self.optimizer.state_dict(),
                    'loss': loss,
                }, os.path.join(self.save_dir, self.signature))

            if self.curr_iter == self.total_iter:
                break

    @staticmethod
    def init_weights(m):
        if isinstance(m, nn.modules.conv._ConvNd):
            nn.init.normal_(m.weight, 0.0, 0.01)
        elif isinstance(m, nn.modules.batchnorm._NormBase):
            nn.init.normal_(m.weight, 1.0, 0.01)
            nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
        elif isinstance(m, RGBPartNet):
            nn.init.xavier_uniform_(m.fc_mat)

    def _parse_dataset_config(
            self,
            dataset_config: DatasetConfiguration
    ) -> Union[CASIAB]:
        self.train_size = dataset_config['train_size']
        self.in_channels = dataset_config['num_input_channels']
        self._dataset_sig = self._make_signature(
            dataset_config,
            popped_keys=['root_dir', 'cache_on']
        )
        config: dict = dataset_config.copy()
        name = config.pop('name')
        if name == 'CASIA-B':
            return CASIAB(**config, is_train=self.is_train)
        elif name == 'FVG':
            # TODO
            pass
        raise ValueError('Invalid dataset: {0}'.format(name))

    def _parse_dataloader_config(
            self,
            dataset: Union[CASIAB],
            dataloader_config: DataloaderConfiguration
    ) -> DataLoader:
        config: dict = dataloader_config.copy()
        if self.is_train:
            (self.pr, self.k) = config.pop('batch_size')
            triplet_sampler = TripletSampler(dataset, (self.pr, self.k))
            return DataLoader(dataset,
                              batch_sampler=triplet_sampler,
                              collate_fn=self._batch_splitter,
                              **config)
        else:  # is_test
            config.pop('batch_size')
            return DataLoader(dataset, **config)

    def _batch_splitter(
            self,
            batch: list[dict[str, Union[np.int64, str, torch.Tensor]]]
    ) -> tuple[dict[str, Union[list[str], torch.Tensor]],
               dict[str, Union[list[str], torch.Tensor]]]:
        """
        Disentanglement need two random conditions, this function will
        split pr * k * 2 samples to 2 dicts each containing pr * k
        samples. labels and clip data are tensor, and others are list.
        """
        _batch = [[], []]
        for i in range(0, self.pr * self.k * 2, self.k * 2):
            _batch[0] += batch[i:i + self.k]
            _batch[1] += batch[i + self.k:i + self.k * 2]

        return default_collate(_batch[0]), default_collate(_batch[1])

    @staticmethod
    def _make_signature(config: dict,
                        popped_keys: Optional[list] = None) -> str:
        _config = config.copy()
        for (key, value) in config.items():
            if popped_keys and key in popped_keys:
                _config.pop(key)
                continue
            if isinstance(value, str):
                pass
            elif isinstance(value, (tuple, list)):
                _config[key] = '_'.join([str(v) for v in value])
            else:
                _config[key] = str(value)

        return '_'.join(_config.values())