1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from models import AutoEncoder, HorizontalPyramidMatching, PartNet
class RGBPartNet(nn.Module):
def __init__(
self,
num_class: int = 74,
ae_in_channels: int = 3,
ae_feature_channels: int = 64,
f_a_c_p_dims: tuple[int, int, int] = (128, 128, 64),
hpm_scales: tuple[int, ...] = (1, 2, 4),
hpm_use_avg_pool: bool = True,
hpm_use_max_pool: bool = True,
fpfe_feature_channels: int = 32,
fpfe_kernel_sizes: tuple[tuple, ...] = ((5, 3), (3, 3), (3, 3)),
fpfe_paddings: tuple[tuple, ...] = ((2, 1), (1, 1), (1, 1)),
fpfe_halving: tuple[int, ...] = (0, 2, 3),
tfa_squeeze_ratio: int = 4,
tfa_num_parts: int = 16,
embedding_dims: int = 256,
triplet_margin: int = 0.2
):
super().__init__()
self.ae = AutoEncoder(
num_class, ae_in_channels, ae_feature_channels, f_a_c_p_dims
)
self.pn = PartNet(
ae_in_channels, fpfe_feature_channels, fpfe_kernel_sizes,
fpfe_paddings, fpfe_halving, tfa_squeeze_ratio, tfa_num_parts
)
out_channels = self.pn.tfa_in_channels
self.hpm = HorizontalPyramidMatching(
ae_feature_channels * 8, out_channels, hpm_scales,
hpm_use_avg_pool, hpm_use_max_pool
)
total_parts = sum(hpm_scales) + tfa_num_parts
empty_fc = torch.empty(total_parts, out_channels, embedding_dims)
self.fc_mat = nn.Parameter(empty_fc)
def fc(self, x):
return torch.matmul(x, self.fc_mat)
def forward(self, x_c1, x_c2, y=None):
# Step 0: Swap batch_size and time dimensions for next step
# n, t, c, h, w
x_c1, x_c2 = x_c1.transpose(0, 1), x_c2.transpose(0, 1)
# Step 1: Disentanglement
# t, n, c, h, w
((x_c_c1, x_p_c1), losses) = self._disentangle(x_c1, x_c2, y)
# Step 2.a: HPM & Static Gait Feature Aggregation
# t, n, c, h, w
x_c = self.hpm(x_c_c1)
# p, t, n, c
x_c = x_c.mean(dim=1)
# p, n, c
# Step 2.b: FPFE & TFA (Dynamic Gait Feature Aggregation)
# t, n, c, h, w
x_p = self.pn(x_p_c1)
# p, n, c
# Step 3: Cat feature map together and fc
x = torch.cat((x_c, x_p))
x = self.fc(x)
if self.training:
# TODO Implement Batch All triplet loss function
batch_all_triplet_loss = torch.tensor(0.)
loss = torch.sum(torch.stack((*losses, batch_all_triplet_loss)))
return loss
else:
return x
def _disentangle(self, x_c1, x_c2, y):
num_frames = len(x_c1)
# Decoded canonical features and Pose images
x_c_c1, x_p_c1 = [], []
if self.training:
# Features required to calculate losses
f_p_c1, f_p_c2 = [], []
xrecon_loss, cano_cons_loss = [], []
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
output = self.ae(x_c1[t1], x_c1[t2], x_c2[t2], y)
(x_c1_t2, f_p_t2, losses) = output
# Decoded features or image
(x_c_c1_t2, x_p_c1_t2) = x_c1_t2
# Canonical Features for HPM
x_c_c1.append(x_c_c1_t2)
# Pose image for Part Net
x_p_c1.append(x_p_c1_t2)
# Losses per time step
# Used in pose similarity loss
(f_p_c1_t2, f_p_c2_t2) = f_p_t2
f_p_c1.append(f_p_c1_t2)
f_p_c2.append(f_p_c2_t2)
# Cross reconstruction loss and canonical loss
(xrecon_loss_t2, cano_cons_loss_t2) = losses
xrecon_loss.append(xrecon_loss_t2)
cano_cons_loss.append(cano_cons_loss_t2)
x_c_c1 = torch.stack(x_c_c1)
x_p_c1 = torch.stack(x_p_c1)
# Losses
xrecon_loss = torch.sum(torch.stack(xrecon_loss))
pose_sim_loss = self._pose_sim_loss(f_p_c1, f_p_c2)
cano_cons_loss = torch.mean(torch.stack(cano_cons_loss))
return ((x_c_c1, x_p_c1),
(xrecon_loss, pose_sim_loss, cano_cons_loss))
else: # evaluating
for t2 in range(num_frames):
t1 = random.randrange(num_frames)
x_c1_t2 = self.ae(x_c1[t1], x_c1[t2], x_c2[t2])
# Decoded features or image
(x_c_c1_t2, x_p_c1_t2) = x_c1_t2
# Canonical Features for HPM
x_c_c1.append(x_c_c1_t2)
# Pose image for Part Net
x_p_c1.append(x_p_c1_t2)
x_c_c1 = torch.stack(x_c_c1)
x_p_c1 = torch.stack(x_p_c1)
return (x_c_c1, x_p_c1), None
@staticmethod
def _pose_sim_loss(f_p_c1: list[torch.Tensor],
f_p_c2: list[torch.Tensor]) -> torch.Tensor:
f_p_c1_mean = torch.stack(f_p_c1).mean(dim=0)
f_p_c2_mean = torch.stack(f_p_c2).mean(dim=0)
return F.mse_loss(f_p_c1_mean, f_p_c2_mean)
|