1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
import os
import random
import re
from typing import Optional, Dict, NewType, Union, List, Set
import numpy as np
import torch
from torch.utils import data
from torchvision.io import read_image
import torchvision.transforms as transforms
ClipLabels = NewType('ClipLabels', Set[str])
ClipConditions = NewType('ClipConditions', Set[str])
ClipViews = NewType('ClipViews', Set[str])
default_frame_transform = transforms.Compose([
transforms.Resize(size=(64, 32))
])
class CASIAB(data.Dataset):
"""CASIA-B multi-view gait dataset"""
def __init__(
self,
root_dir: str,
is_train: bool = True,
train_size: int = 74,
num_sampled_frames: int = 30,
selector: Optional[Dict[
str, Union[ClipLabels, ClipConditions, ClipLabels]
]] = None,
num_input_channels: int = 3,
frame_height: int = 64,
frame_width: int = 32,
device: torch.device = torch.device('cpu')
):
"""
:param root_dir: Directory to dataset root.
:param is_train: Train or test, True for train, False for test.
:param train_size: Number of subjects in train, when `is_train`
is False, test size will be inferred.
:param num_sampled_frames: Number of sampled frames for train
:param selector: Restrict data labels, conditions and views
:param num_input_channels Number of input channel, RBG image
has 3 channel, grayscale image has 1 channel
:param frame_height Frame height after transforms
:param frame_width Frame width after transforms
:param device Device be used for transforms
"""
super(CASIAB, self).__init__()
self.root_dir = root_dir
self.is_train = is_train
self.train_size = train_size
self.num_sampled_frames = num_sampled_frames
self.num_input_channels = num_input_channels
self.frame_height = frame_height
self.frame_width = frame_width
self.device = device
self.frame_transform: transforms.Compose
transform_compose_list = [
transforms.Resize(size=(self.frame_height, self.frame_width))
]
if self.num_input_channels == 1:
transform_compose_list.insert(0, transforms.Grayscale())
self.frame_transform = transforms.Compose(transform_compose_list)
# Labels, conditions and views corresponding to each video clip
self.labels: np.ndarray[np.str_]
self.conditions: np.ndarray[np.str_]
self.views: np.ndarray[np.str_]
# Video clip directory names
self._clip_names: List[str] = []
# Labels, conditions and views in dataset,
# set of three attributes above
self.metadata = Dict[str, Set[str]]
clip_names = sorted(os.listdir(self.root_dir))
if self.is_train:
clip_names = clip_names[:self.train_size * 10 * 11]
else: # is_test
clip_names = clip_names[self.train_size * 10 * 11:]
# Remove empty clips
for clip_name in clip_names.copy():
if len(os.listdir(os.path.join(self.root_dir, clip_name))) == 0:
print("Clip '{}' is empty.".format(clip_name))
clip_names.remove(clip_name)
# clip name constructed by label, condition and view
# e.g 002-bg-02-090 means clip from Subject #2
# in Bag #2 condition from 90 degree angle
labels, conditions, views = [], [], []
if selector:
selected_labels = selector.pop('labels', None)
selected_conditions = selector.pop('conditions', None)
selected_views = selector.pop('views', None)
label_regex = r'\d{3}'
condition_regex = r'(nm|bg|cl)-0[0-4]'
view_regex = r'\d{3}'
# Match required data using RegEx
if selected_labels:
label_regex = '|'.join(selected_labels)
if selected_conditions:
condition_regex = '|'.join(selected_conditions)
if selected_views:
view_regex = '|'.join(selected_views)
clip_regex = '(' + ')-('.join([
label_regex, condition_regex, view_regex
]) + ')'
for clip_name in clip_names:
match = re.fullmatch(clip_regex, clip_name)
if match:
labels.append(match.group(1))
conditions.append(match.group(2))
views.append(match.group(3))
self._clip_names.append(match.group(0))
self.metadata = {
'labels': selected_labels,
'conditions': selected_conditions,
'views': selected_views
}
else: # Add all
self._clip_names += clip_names
for clip_name in self._clip_names:
split_clip_name = clip_name.split('-')
label = split_clip_name[0]
labels.append(label)
condition = '-'.join(split_clip_name[1:2 + 1])
conditions.append(condition)
view = split_clip_name[-1]
views.append(view)
self.labels = np.asarray(labels)
self.conditions = np.asarray(conditions)
self.views = np.asarray(views)
if not selector:
self.metadata = {
'labels': set(self.labels.tolist()),
'conditions': set(self.conditions.tolist()),
'views': set(self.views.tolist())
}
def __len__(self) -> int:
return len(self.labels)
def __getitem__(self, index: int) -> Dict[str, Union[str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
clip_name = self._clip_names[index]
clip = self._read_video(clip_name)
sample = {
'label': label,
'condition': condition,
'view': view,
'clip': clip
}
return sample
def _read_video(self, clip_name: str) -> torch.Tensor:
frames = []
clip_path = os.path.join(self.root_dir, clip_name)
sampled_frame_names = self._sample_frames(clip_path)
for frame_name in sampled_frame_names:
frame_path = os.path.join(clip_path, frame_name)
frame = read_image(frame_path)
frame = self.frame_transform(frame.to(self.device))
frames.append(frame.cpu())
clip = torch.stack(frames)
return clip
def _sample_frames(self, clip_path: str) -> List[str]:
frame_names = os.listdir(clip_path)
if self.is_train:
num_frames = len(frame_names)
if num_frames < self.num_sampled_frames:
frame_names = random.choices(frame_names,
k=self.num_sampled_frames)
else:
frame_names = random.sample(frame_names,
k=self.num_sampled_frames)
return sorted(frame_names)
|