1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
import os
import random
import re
from typing import Optional, Dict, NewType, Union, List, Set, Tuple
import numpy as np
import torch
from PIL import Image
from torch.utils import data
import torchvision.transforms as transforms
from tqdm import tqdm
ClipLabels = NewType('ClipLabels', Set[str])
ClipConditions = NewType('ClipConditions', Set[str])
ClipViews = NewType('ClipViews', Set[str])
class CASIAB(data.Dataset):
"""CASIA-B multi-view gait dataset"""
def __init__(
self,
root_dir: str,
is_train: bool = True,
train_size: int = 74,
num_sampled_frames: int = 30,
discard_threshold: int = 15,
selector: Optional[Dict[
str, Union[ClipLabels, ClipConditions, ClipLabels]
]] = None,
num_input_channels: int = 3,
frame_size: Tuple[int, int] = (64, 32),
cache_on: bool = False
):
"""
:param root_dir: Directory to dataset root.
:param is_train: Train or test, True for train, False for test.
:param train_size: The number of subjects used for training,
when `is_train` is False, test size will be inferred.
:param num_sampled_frames: The number of sampled frames.
(Training Only)
:param discard_threshold: Discard the sample if its number of
frames is less than this threshold.
:param selector: Restrict output data labels, conditions and
views.
:param num_input_channels: The number of input channel(s),
RBG image has 3 channels, grayscale image has 1 channel.
:param frame_size: Frame height and width after transforming.
:param cache_on: Preload all clips in memory or not, this will
increase loading speed, but will add a preload process and
cost a lot of RAM. Loading the entire dataset
(is_train = True,train_size = 124, discard_threshold = 1,
num_input_channels = 3, frame_height = 64, frame_width = 32)
need about 22 GB of RAM.
"""
super(CASIAB, self).__init__()
self.root_dir = root_dir
self.is_train = is_train
self.train_size = train_size
self.num_sampled_frames = num_sampled_frames
self.discard_threshold = discard_threshold
self.num_input_channels = num_input_channels
self.frame_size = frame_size
self.cache_on = cache_on
self.frame_transform: transforms.Compose
transform_compose_list = [
transforms.Resize(size=self.frame_size),
transforms.ToTensor()
]
if self.num_input_channels == 1:
transform_compose_list.insert(0, transforms.Grayscale())
self.frame_transform = transforms.Compose(transform_compose_list)
# Labels, conditions and views corresponding to each video clip
self.labels: np.ndarray[np.str_]
self.conditions: np.ndarray[np.str_]
self.views: np.ndarray[np.str_]
# Video clip directory names
self._clip_names: List[str] = []
# Labels, conditions and views in dataset,
# set of three attributes above
self.metadata = Dict[str, Set[str]]
# Dictionaries for indexing frames and frame names by clip name
# and chip path when cache is on
self._cached_clips_frame_names: Optional[Dict[str, List[str]]] = None
self._cached_clips: Optional[Dict[str, torch.Tensor]] = None
clip_names = sorted(os.listdir(self.root_dir))
if self.is_train:
clip_names = clip_names[:self.train_size * 10 * 11]
else: # is_test
clip_names = clip_names[self.train_size * 10 * 11:]
# Remove empty clips
discard_clips_names = []
for clip_name in clip_names.copy():
clip_path = os.path.join(self.root_dir, clip_name)
if len(os.listdir(clip_path)) < self.discard_threshold:
discard_clips_names.append(clip_name)
clip_names.remove(clip_name)
if len(discard_clips_names) != 0:
print(', '.join(discard_clips_names[:-1]),
'and', discard_clips_names[-1], 'will be discarded.')
# clip name constructed by label, condition and view
# e.g 002-bg-02-090 means clip from Subject #2
# in Bag #2 condition from 90 degree angle
labels, conditions, views = [], [], []
if selector:
selected_labels = selector.pop('labels', None)
selected_conditions = selector.pop('conditions', None)
selected_views = selector.pop('views', None)
label_regex = r'\d{3}'
condition_regex = r'(nm|bg|cl)-0[0-4]'
view_regex = r'\d{3}'
# Match required data using RegEx
if selected_labels:
label_regex = '|'.join(selected_labels)
if selected_conditions:
condition_regex = '|'.join(selected_conditions)
if selected_views:
view_regex = '|'.join(selected_views)
clip_re = re.compile('(' + ')-('.join((
label_regex, condition_regex, view_regex
)) + ')')
for clip_name in clip_names:
match = clip_re.fullmatch(clip_name)
if match:
labels.append(match.group(1))
conditions.append(match.group(2))
views.append(match.group(3))
self._clip_names.append(match.group(0))
self.metadata = {
'labels': selected_labels,
'conditions': selected_conditions,
'views': selected_views
}
else: # Add all
self._clip_names += clip_names
for clip_name in self._clip_names:
split_clip_name = clip_name.split('-')
label = split_clip_name[0]
labels.append(label)
condition = '-'.join(split_clip_name[1:2 + 1])
conditions.append(condition)
view = split_clip_name[-1]
views.append(view)
self.labels = np.asarray(labels)
self.conditions = np.asarray(conditions)
self.views = np.asarray(views)
if not selector:
self.metadata = {
'labels': set(self.labels.tolist()),
'conditions': set(self.conditions.tolist()),
'views': set(self.views.tolist())
}
if self.cache_on:
self._cached_clips_frame_names = dict()
self._cached_clips = dict()
self._preload_all_video()
def __len__(self) -> int:
return len(self.labels)
def __getitem__(self, index: int) -> Dict[str, Union[str, torch.Tensor]]:
label = self.labels[index]
condition = self.conditions[index]
view = self.views[index]
clip_name = self._clip_names[index]
clip = self._read_video(clip_name)
sample = {
'label': label,
'condition': condition,
'view': view,
'clip': clip
}
return sample
def _preload_all_video(self):
for clip_name in tqdm(self._clip_names,
desc='Preloading dataset', unit='clips'):
self._read_video(clip_name, is_caching=True)
def _read_video(self, clip_name: str,
is_caching: bool = False) -> torch.Tensor:
clip_path = os.path.join(self.root_dir, clip_name)
sampled_frame_names = self._sample_frames(clip_path, is_caching)
if self.cache_on:
if is_caching:
clip = self._read_frames(clip_path, sampled_frame_names)
self._cached_clips[clip_name] = clip
else: # Load cache
cached_clip = self._cached_clips[clip_name]
cached_clip_frame_names \
= self._cached_clips_frame_names[clip_path]
# Index the original clip via sampled frame names
clip = self._load_cached_video(cached_clip,
cached_clip_frame_names,
sampled_frame_names)
else: # Cache off
clip = self._read_frames(clip_path, sampled_frame_names)
return clip
def _load_cached_video(
self,
clip: torch.Tensor,
frame_names: List[str],
sampled_frame_names: List[str]
) -> torch.Tensor:
# Mask the original clip when it is long enough
if len(frame_names) >= self.num_sampled_frames:
sampled_frame_mask = np.isin(frame_names,
sampled_frame_names)
sampled_clip = clip[sampled_frame_mask]
else: # Create a indexing filter from the beginning of clip
sampled_index = frame_names.index(sampled_frame_names[0])
sampled_frame_filter = [sampled_index]
for i in range(1, self.num_sampled_frames):
if sampled_frame_names[i] != sampled_frame_names[i - 1]:
sampled_index += 1
sampled_frame_filter.append(sampled_index)
sampled_clip = clip[sampled_frame_filter]
return sampled_clip
def _read_frames(self, clip_path, frame_names):
frames = []
for frame_name in frame_names:
frame_path = os.path.join(clip_path, frame_name)
frame = Image.open(frame_path)
frame = self.frame_transform(frame)
frames.append(frame)
clip = torch.stack(frames)
return clip
def _sample_frames(self, clip_path: str,
is_caching: bool = False) -> List[str]:
if self.cache_on:
if is_caching:
# Sort frame in advance for loading convenience
frame_names = sorted(os.listdir(clip_path))
self._cached_clips_frame_names[clip_path] = frame_names
# Load all without sampling
return frame_names
else: # Load cache
frame_names = self._cached_clips_frame_names[clip_path]
else: # Cache off
frame_names = os.listdir(clip_path)
if self.is_train:
num_frames = len(frame_names)
# Sample frames without replace if have enough frames
if num_frames < self.num_sampled_frames:
frame_names = random.choices(frame_names,
k=self.num_sampled_frames)
else:
frame_names = random.sample(frame_names,
k=self.num_sampled_frames)
return sorted(frame_names)
|